Electronic Supplementary Material (ESI) for Analytical Methods.
This journal is © The Royal Society of Chemistry 2021

Supplementary information
Microplastic extraction from sediments established? – A critical evaluation
from a trace recovery experiment with a custom-made density separator
Maurits Halbach*, Christin Baensch, Sonka Dirksen and Barbara Scholz-Böttcher

Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky
University of Oldenburg, P.O. Box 2503, D-26111 Oldenburg, Germany.

Supplement content: 6 pages (cover page included), 8 tables, 3 figure

Table S1

(page S-2)

Grain size distribution of quartz sand

Table S2

(page S-2)

Spiked polymer masses in µg.

Table S3

(page S-2)

Spiked number of polymer particles.

Table S4

(page S-4)

Polymer specifications.

Table S5

(page S-4)

Injection Standards.

Table S6

(page S-4)

Conditions for Pyrolysis-GCMS/Thermochemolysis measurements.

Table S7

(page S-5)

Overview of different measurements sequences and accompanied
calibrations.

Table S8

(page S-5)

List of polymers and their respective specific indicator ions.

Table S9

(page S-6)

Comparable information on recovery replicates and blank.

Figure S1

(page S-2)

Modified glass beaker (a) and displacement cone (b) with respective
dimensions.

Figure S2

(page S-3)

Schematic density separation process

Figure S3

(page S-6)

Formal and calculation example (PP) for the process standard
deviation and its projection on the polymer recovery.

1

Figure S1 Modified glass beaker (a) and displacement cone (b) with respective dimensions.

2

Table S1 Grain size distribution of quartz sand
<2
µm
0,0

Fine quarz sand

2 - 6,3
µm
1,0

6,3 - 20
µm
1,6

20 - 63
µm
1,2

QS4

QS-A1

63 - 200
µm
87,5

200 - 630
µm
8,7

630 - 2000
µm
0,0

Table S2 Spiked polymer masses in µg.
Polymer
PE
PP
PUR
PA6
PS
PMMA
PC
PVC
PET

QS1
48.1
46.7
42.4
49.3
18.9
21.6
4.9
43.9
14.1

QS2
48.1
43.6
40.2
42.1
20.8
20.6
4.9
44.6
14.7

QS3
43.1
44.8
47.5
48.2
19.9
20.6
4.9
43.1
14.4

40.7
42.5
48.5
40.8
21.2
20.0
5.7
40.7
15.8

40.4
47.8
45.3
20
22.2
4.8
46.3
15.5

QS-A2
40.7
43.7
45.8
42.0
20.1
19.3
4.9
42.4
15.3

QS-A3
41.5
40.1
41.5
45.0
20.3
20.3
4.9
40.6
14.9

QS-A4
40.4
40.3
44.7
48.9
21
19.8
5.2
40.4
15.6

Table S3 Spiked number of polymer particles.
Polymer
PE
PP
PUR
PA6
PS
PMMA
PC
PVC
PET

QS1

QS2

QS3

QS4

8
8
6
7
6
5
6
18
6

7
7
9
7
6
6
6
18
6

7
9
10
8
6
5
9
18
8

15
8
8
8
10
6
5
20
8

QS-A1
7
8
10
6
5
5
7
15
9

QS-A2
8
7
7
9
9
7
7
20
8

QS-A3
7
8
7
10
9
5
5
20
8

QS-A4
15
8
9
7
8
8
5
20
5

3

Figure S2 Schematic density separation process.

4

Table S4 Polymer specifications.
abbreviation

polymer

PP
PE

Polypropylene
Polyethylene

PS

Polystyrene

PA6

Polyamide-6
Polymethylmethacrylate
Polycarbonate
MDI-Polyurethane
Polyethyleneterephthalate
Polyvinylchloride

PMMA
PC
MDI-PUR
PET
PVC

company

product name

Borealis AG, Wien, Austria
Borealis AG, Austria
Total Refining & Chemical Polymers, Total
Research & Technology Feluy, Belgium
Ter Hell GmbH, Germany
Evonik Performance Materials GmbH,
Germany
Teijin Kasei America, US
GEBA GmbH

HL508FB
MG7547S

Ter Hell GmbH, Germany

K896

Granulat GmbH, Germany

Troilit® VB 537-HE

Impact 7240
Akulon® K222-D
Plexiglas® 7N
Panlite® L-1250Y
Desmovit® DP LFC 3379

Table S5 Injection Standards.
ISTDPY

Injection (µg)

9-tetradecyl-1,2,3,4,5,6,7,8-octahydro anthracene
cholanic acid
anthracene (d10)
polystyrene (d8)

0.5
0.5
1.0
1.0

Table S6 Conditions for Pyrolysis-GCMS/Thermochemolysis measurements.
Micro furnace pyrolyzer
carrier gas
curie temperature
pyrolysis time
transfer line temperature
Gas chromatograph
injector
mode
temperature
pre-column
column
flow (const.)
temperature program
transfer line temperature
Mass spectrometer
ionization energy
scan rate
scan range
EI-Source temperature
quadrupole temperature

EGA/PY-3030D (FrontierLabs)
Helium
590°C
1 min
320°C
7890B (Agilent)
split/split less
split 15:1
300°C
Trajan P/N 064062; 10 m x 250 μm/ 363 μm VSPD Tubing
DB5 (J&W); 30 m x 0.25 mm ID, film thickness 0.25 µm
1.2 ml/min
35°C (2 min) → 310 °C (30 min) at 3°C/min
280°C
MSD 5977A (Agilent)
70 eV
2.48 scans/s
50-650 amu
230 °C
150 °C

5

Table S7 Overview of different measurements sequences and accompanied calibrations.

QS-A
ISTDpy
b
slope
r2
sx0 [µg]
n
QS

PE

PP

PET

PS

PVC

PC

PMMA

PA6

PUR

d-PS
7.88E-05
8.15E-03
0.93
5.2
10

TOHA
1.25E-02
2.58E-02
0.99
1.46
8

none
-4.06E+06
2.77E+06
0.97
0.94
6

none
3.02E+05
1.33E+06
0.98
1
7

none
3.25E+06
7.02E+05
0.9
5
12

TOHA
-1.22E+00
2.70E+00
0.95
0.4
6

d-PS
2.50E-01
3.19E-01
0.95
1.7
15

TOHA
2.51E-01
1.70E-01
0.96
3.7
8

TOHA
2.66E-02
6.85E-03
0.98
2.8
5

Anthracene- Anthracene- AnthraceneAnthracene- Anthracenenone
d-PS
d10
d10
d10
d10
d10
b
-4.32E-03 3.22E-02
5.40E-02
1.54E-04
-8.45E+05 3.17E-01
-7.10E-01
2.51E-01
slope
7.41E-03
1.92E-02
1.82E-01
7.39E-02
1.08E+06
2.49E-01
2.58E-01
3.86E-01
r2
0.96
0.98
0.8
0.97
0.99
0.99
0.91
0.92
sx0 [µg] 2.2
2.3
3.1
1.4
1.9
0.2
2.1
3.4
n
5
5
6
5
5
4
6
8
r2 = coefficient of determination. sx0 = process standard deviation. TOHA = 9-tetradecyl-1.2.3.4.5.6.7.8-octahydro anthracene
ISTDpy

TOHA

Table S8 List of polymers and their respective specific indicator ions.

Polyethylene

Abbreviation
PE

Polypropylene

RI a

Indicator ions
(m/z)
85
83
82

Alkanes (e.g. C20)
-Alkenes (e.g. C20)
-Alkenes (e.g. C20)

2000
1994
1987

M
(m/z)
282
280
278

PP

2,4-Dimethylhept-1-ene
2,4,6,8-Tetramethyl-1-undecenesb
2,4,6,8-Tetramethyl-1-undecenesc
2,4,6,8-Tetramethyl-1-undecenesd

832
1306
1315
1323

126
210
210
210

126, 70
100, 69
100, 69
100, 69

Polystyrene

PS

Styrene
2,4-Diphenyl-1-butene
2,4,6-Triphenyl-1-hexene

890
1720
2440

104
208
312

104
91
91

Polyvinyl
chloride

PVC

Benzene
Naphthalene

738
1187

78
128

78
128,102,64

Poly(methyl
methacrylate)

PMMA

Methylacrylate
Methyl methacrylate

726
775

86
100

55
100, 69

Polyamide

PA6

-Caprolactam
N-methyl caprolactame

1257
1224

113
127

113
127

Polyethylene
terephthalate

PET

Dimethyl terephthalatee

1504

194

163

Polycarbonate

PC

p-Methoxy-tert-butylbenzenee
2,2-Bis(4'-methoxy-phenyl) propanee

1240
2065

242
256

164, 149
256, 241

MDIPolyurethane

MDI-PUR

4,4‘-Methylenbis(N-methylaniline) e
N,N-Dimethyl-4-(4methylamino)benzylaniline
4,4’-Methylenbis(N,N-dimethylaniline) e

2330
2341

226
240

226
240

2354

254

253, 254

Polymer

Characteristic decomposition product(s)

a

RI = Retention index calculated after Van Den Dool 1963, DB-5 column; M = molecular ion, m/z = mass to charge ratio; bIsotactic. cHeterotactic.
d
Syndiotactic. eOnly after TMAH teatment; bold: indicator ions used for calibration

6

Anthracene
-d10
-6.27E-03
7.54E-03
0.99
1.6
4

Table S9 Comparable information on recovery replicates and blank.
sample
type

unit

PE

PP

PET

PS

PVC

PC

PMMA

PA6

PUR

QS1

recovery area 4,423,989 69,749,536 146,911,204 44,489,460

57,876,856

79,473,631 52,603,129 216,781,652 8,299,622

QS2

recovery area

27,443,610

86,370,510 76,219,166

99,725,655

5,295,626

QS3
QS4

recovery area 2,365,030 57,724,282

77,197,126

45,917,973 134,302,177 76,988,927 25,326,922

98,979,717

5,444,208

recovery area 1,814,458 59,692,763

91,303,143

71,910,368

40,685,610

67,179,622 47,915,105 110,531,649 7,760,737

QS-A1

recovery area

157,769

16,848,259

7,017,346

43,320,480

21,063,230 16,630,824

11,932,827

820,954

QS-A2

recovery area

98,896

12,016,237

75,259,770

11,205,206

42,564,412

37,494,823 29,214,028

14,11,615

1,022,456

QS-A3
QS-A4

recovery area

192,270

10,152,031

52,272,313

14,382,739

24,386,681

31,431,327 17,894,426

15,795,688

862,991

recovery area

179,347

11,104,362

49,782,414

14,594,378

35,814,383

44,873,513 17,881,931

21,637,572

1,175,387

QS-AB1
QS-AB1
quantified

895,447

43,990,738 179,307,147 41,640,345

blank

area

n.d.

n.d.

1,188,910

184,206

3,090,954

25,619

1,267,267

476,340

n.d.

blank

µg

n.d.

n.d.

0.58

-0.09

-0.23

0.46

4.42

-0.10

n.d.

Figure S3 Formal and calculation example (PP) for the process standard deviation and its projection on
the polymer recovery.

7