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Law of total variation

For any regression model involving a response y ∈ R and a covariate
vector x ∈ Rp, we can decompose the marginal variance of y as follows:

var(y) = varxE [y |x = x ] + Exvar[y |x = x ].

I If the population is homoscedastic, var[y |x ] does not depend on x ,
so we can simply write var[y |x ] = σ2, and we get
var(y) = varxE [y |x ] + σ2.

I If the population is heteroscedastic, var[y |x = x ] is a function σ2(x)
with expected value σ2 = Exσ

2(x), and again we get
var(y) = varxE [y |x ] + σ2.

If we write y = f (x) + ε with E [ε|x ] = 0, then E [y |x ] = f (x), and
varxE [y |x ] summarizes the variation of f (x) over the marginal
distribution of x .
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Law of total variation
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Orange curves: conditional distributions of y given x
Purple curve: marginal distribution of y
Black dots: conditional means of y given x
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Pearson correlation

The population Pearson correlation coefficient of two jointly distributed
random variables x ∈ R and y ∈ R is

ρxy ≡
cov(x , y)

σxσy
.

Given data y = (y1, . . . , yn)′ and x = (x1, . . . , xn)′, the Pearson
correlation coefficient is estimated by

ρ̂xy =
ĉov(x , y)

σ̂x σ̂y
=

∑
i (xi − x̄)(yi − ȳ)√∑

i (xi − x̄)2 ·
∑

i (yi − ȳ)2
=

(x − x̄)′(y − ȳ)

‖x − x̄‖ · ‖y − ȳ‖
.

When we write y − ȳ here, this means y − ȳ · 1, where 1 is a vector of
1’s, and ȳ is a scalar.
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Pearson correlation

By the Cauchy-Schwartz inequality,

−1 ≤ ρxy ≤ 1
−1 ≤ ρ̂xy ≤ 1.

The sample correlation coefficient is slightly biased, but the bias is so
small that it is usually ignored.
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Pearson correlation and simple linear regression slopes

For the simple linear regression model

y = α + βx + ε,

if we view x as a random variable that is uncorrelated with ε, then

cov(x , y) = βσ2
x

and the correlation is

ρxy ≡ cor(x , y) =
β√

β2 + σ2/σ2
x

.

The sample correlation coefficient for data x = (x1, . . . , xn) and
y = (y1, . . . , yn) is related to the least squares slope estimate:

β̂ =
ĉov(x , y)

σ̂2
x

= ρ̂xy
σ̂y
σ̂x
.

6 / 40



Orthogonality between fitted values and residuals

Recall that the fitted values are

ŷ = x β̂ = Py

where y ∈ Rn is the vector of observed responses, and P ∈ Rn×n is the
projection matrix onto col(X).

The residuals are

r = y − ŷ = (I − P)y ∈ Rn.

Since P(I − P) = 0n×n it follows that ŷ ′r = 0.

since r̄ = 0, it is equivalent to state that the sample correlation
coefficient between r and ŷ is zero, i.e.

ĉor(r , ŷ) = 0.
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Coefficient of determination

A descriptive summary of the explanatory power of x for y is given by the
coefficient of determination, also known as the proportion of explained
variance, or multiple R2. This is the quantity

R2 ≡ 1− ‖y − ŷ‖2

‖y − ȳ‖2
=
‖ŷ − ȳ‖2

‖y − ȳ‖2
=

v̂ar(ŷ)

v̂ar(y)
.

The equivalence between the two expressions follows from the identity

‖y − ȳ‖2 = ‖y − ŷ + ŷ − ȳ‖2

= ‖y − ŷ‖2 + ‖ŷ − ȳ‖2 + 2(y − ŷ)′(ŷ − ȳ)

= ‖y − ŷ‖2 + ‖ŷ − ȳ‖2,

It should be clear that R2 = 0 iff ŷ = ȳ and R2 = 1 iff ŷ = y .
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Coefficient of determination

The coefficient of determination is equal to

ĉor(ŷ , y)2.

To see this, note that

ĉor(ŷ , y) =
(ŷ − ȳ)′(y − ȳ)

‖ŷ − ȳ‖ · ‖y − ȳ‖

=
(ŷ − ȳ)′(y − ŷ + ŷ − ȳ)

‖ŷ − ȳ‖ · ‖y − ȳ‖

=
(ŷ − ȳ)′(y − ŷ) + (ŷ − ȳ)′(ŷ − ȳ)

‖ŷ − ȳ‖ · ‖y − ȳ‖

=
‖ŷ − ȳ‖
‖y − ȳ‖

.
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Coefficient of determination in simple linear regression

In general,

R2 = ĉor(y , ŷ)2 =
ĉov(y , ŷ)2

v̂ar(y) · v̂ar(ŷ)
.

In the case of simple linear regression,

ĉov(y , ŷ) = ĉov(y , α̂ + β̂x)

= β̂ ĉov(y , x),

and

v̂ar(ŷ) = v̂ar(α̂ + β̂x)

= β̂2v̂ar(x)

Thus for simple linear regression, R2 = ĉor(y , x)2 = ĉor(y , ŷ)2.
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Relationship to the F statistic

The F-statistic for the null hypothesis

β1 = . . . = βp = 0

is

‖ŷ − ȳ‖2

‖y − ŷ‖2
· n − p − 1

p
=

R2

1− R2
· n − p − 1

p
,

which is an increasing function of R2.
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Adjusted R2

The sample R2 is an estimate of the population R2:

1− Exvar[y |x ]

var(y)
.

Since it is a ratio, the plug-in estimate R2 is biased, although the bias is
not large unless the sample size is small or the number of covariates is
large. The adjusted R2 is an approximately unbiased estimate of the
population R2:

1− (1− R2)
n − 1

n − p − 1
.

The adjusted R2 is always less than the unadjusted R2. The adjusted R2

is always less than or equal to one, but can be negative.
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The unique variation in one covariate

How much “information” about y is present in a covariate xk? This
question is not straightforward when the covariates are non-orthogonal,
since several covariates may contain overlapping information about y .

Let x⊥k ∈ Rn be the residual of the kth covariates, xk ∈ Rn, after
regressing it against all other covariates (including the intercept). If P−k
is the projection onto span({xj , j 6= k}), then

x⊥k = (I − P−k)xk .

We could use v̂ar(x⊥k )/v̂ar(xk) to assess how much of the variation in xk
is “unique” in that it is not also captured by other predictors.

But this measure doesn’t involve y , so it can’t tell us whether the unique
variation in xk is useful in the regression analysis.
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The unique regression information in one covariate

To learn how xk contributes “uniquely” to the regression, we can consider
how introducing xk to a working regression model affects the R2.

Let ŷ−k = P−ky be the fitted values in the model omitting covariate k.

Let R2 denote the multiple R2 for the full model, and let R2
−k be the

multiple R2 for the regression omitting covariate xk . The value of

R2 − R2
−k

is a way to quantify how much unique information about y in xk is not
captured by the other covariates. This is called the semi-partial R2.
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Identity involving norms of fitted values and residuals

Before we continue, we will need a simple identity that is often useful.

In general, if a and b are orthogonal, then ‖a + b‖2 = ‖a‖2 + ‖b‖2.

If a and b − a are orthogonal, then

‖b‖2 = ‖b − a + a‖2 = ‖b − a‖2 + ‖a‖2.

Thus in this setting we have ‖b‖2 − ‖a‖2 = ‖b − a‖2.

Applying this fact to regression, we know that the fitted values and
residuals are orthogonal. Thus for the regression omitting variable k, ŷ−k
and y − ŷ−k are orthogonal, so ‖y − ŷ−k‖2 = ‖y‖2 − ‖ŷ−k‖2.

By the same argument, ‖y − ŷ‖2 = ‖y‖2 − ‖ŷ‖2.
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Improvement in R2 due to one covariate

Now we can obtain a simple, direct expression for the semi-partial R2.

Since x⊥k is orthogonal to the other covariates,

ŷ = ŷ−k +
〈y , x⊥k 〉
〈x⊥k , x⊥k 〉

x⊥k ,

and

‖ŷ‖2 = ‖ŷ−k‖2 + 〈y , x⊥k 〉2/‖x⊥k ‖2.
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Improvement in R2 due to one covariate

Thus we have

R2 = 1− ‖y − ŷ‖2

‖y − ȳ‖2

= 1− ‖y‖
2 − ‖ŷ‖2

‖y − ȳ‖2

= 1− ‖y‖
2 − ‖ŷ−k‖2 − 〈y , x⊥k 〉2/‖x⊥k ‖2

‖y − ȳ‖2

= 1− ‖y − ŷ−k‖2

‖y − ȳ‖2
+
〈y , x⊥k 〉2/‖x⊥k ‖2

‖y − ȳ‖2

= R2
−k +

〈y , x⊥k 〉2/‖x⊥k ‖2

‖y − ȳ‖2
.
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Semi-partial R2

Thus the semi-partial R2 is

R2 − R2
−k =

〈y , x⊥k 〉2/‖x⊥k ‖2

‖y − ȳ‖2
=
〈y , x⊥k /‖x⊥k ‖〉2

‖y − ȳ‖2
.

Since x⊥k /‖x⊥k ‖ is centered and has length 1, it follows that

R2 − R2
−k = ĉor(y , x⊥k )2.

Thus the semi-partial R2 for covariate k has two interpretations:

I It is the improvement in R2 resulting from including covariate k in a
working regression model that already contains the other covariates.

I It is the R2 for a simple linear regression of y on x⊥k = (I − P−k)xk .
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Partial R2

The partial R2 is

R2 − R2
−k

1− R2
−k

=
〈y , x⊥k 〉2/‖x⊥k ‖2

‖y − ŷ−k‖2
.

The partial R2 for covariate k is the fraction of the maximum possible
improvement in R2 that is contributed by covariate k .

Let ŷ−k be the fitted values for regressing y on all covariates except xk .

Since ŷ ′−kx
⊥
k = 0,

〈y , x⊥k 〉2

‖y − ŷ−k‖2 · ‖x⊥k ‖2
=

〈y − ŷ−k , x
⊥
k 〉2

‖y − ŷ−k‖2 · ‖x⊥k ‖2

The expression on the left is the usual R2 that would be obtained when
regressing y − ŷ−k on x⊥k . Thus the partial R2 is the same as the usual
R2 for (I − P−k)y regressed on (I − P−k)xk .
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The partial R2 and variable importance
The partial R2 is one way to measure the importance of a variable in a
regression model. However “importance” has many facets and no one
measure is a perfect indicator of performance. Other possible indicators
of variable importance are:

I The estimated regression slope β̂k – this is not a good measure
because it’s scale depends on the units of the corresponding
covariate.

I The standardized regression slope β̂kSD(xk). Since
β̂kxk = β̂kSD(xk) · xl/SD(xk) this measures the expected change in
y corresponding to a one standard deviation change in xk . This is a
dimensionless quantity.

I The p-value for the null hypothesis that βk = 0 (e.g. from a Wald
test). This is not a good measure of importance because in many
cases it tells you more about the sample size than the importance of
xk – as long as βk 6= 0, this p-value will tend to zero as n grows.

I The semi-partial R2 – this measure does not “correct” for the
strength of the base model, which is a drawback in some settings
but an advantage in others.
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The partial R2 and variable importance

No measure of variable importance is perfect, for example:

1. The most important variable may not have any causal relationship
with y – it may only be imporant because it is a proxy or surrogate
for the causes of y , or the most important variable may even be
caused by y .

2. The most important variable may not be modifiable, e.g. if we want
to manipulate the factors that predict y in order to alter the value
of y in a favorable direction, the most important factor may not be
modifiable (e.g. age may be the most important risk factor for a
health outcome but we cannot stop the passage of time).
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Decomposition of projection matrices

Suppose P ∈ Rn×n is a rank-d projection matrix, and U is a n × d
orthogonal matrix whose columns span col(P). If we partition U by
columns

U =

 | | · · · |
u1 u2 · · · ud
| | · · · |

 ,

then P = UU ′, so we can write

P =
d∑

j=1

uju
′
j .

Note that this representation is not unique, since there are different
orthogonal bases for col(P).

Each summand uju
′
j ∈ Rn×n is a rank-1 projection matrix onto 〈uj〉.
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Decomposition of R2

Question: In a multiple regression model, how much of the variance in y
is explained by a particular covariate?

Orthogonal case: If the design matrix X is orthogonal (X ′X = I ), the
projection P onto col(X ) can be decomposed as

P =

p∑
j=0

Pj =
11′

n
+

p∑
j=1

xjx
′
j ,

where xj is the jth column of the design matrix (assuming here that the
first column of X is an intercept).
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Decomposition of R2 (orthogonal case)

The n × n rank-1 matrix

Pj = xjx
′
j

is the projection onto span(xj) (and P0 is the projection onto the span of
the vector of 1’s). Furthermore, by orthogonality, PjPk = 0 unless j = k.
Since

ŷ − ȳ =

p∑
j=1

Pjy ,

by orthogonality

‖ŷ − ȳ‖2 =

p∑
j=1

‖Pjy‖2.

Here we are using the fact that if u1, . . . , um are orthogonal, then

‖u1 + · · ·+ um‖2 = ‖u1‖2 + · · ·+ ‖um‖2.
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Decomposition of R2 (orthogonal case)

The R2 for simple linear regression of y on xj is

R2
j ≡ ‖ŷ − ȳ‖2/‖y − ȳ‖2 = ‖Pjy‖2/‖y − ȳ‖2,

so we see that for orthogonal design matrices,

R2 =

p∑
j=1

R2
j .

That is, the overall coefficient of determination is the sum of univariate
coefficients of determination for all the explanatory variables.
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Decomposition of R2

Non-orthogonal case: If X is not orthogonal, the overall R2 will not be
the sum of single covariate R2’s.

If we let R2
j be as above (the R2 values for regressing Y on each Xj),

then there are two different situations:
∑

j R
2
j > R2, and

∑
j R

2
j < R2.
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Decomposition of R2

Case 1:
∑

R2
j > R2

It’s not surprising that
∑

j R
2
j can be bigger than R2. For example,

suppose that the population data generating model is

y = x1 + ε

and x2 is highly correlated with x1, but is not part of the data generating
model, as in the following diagram:

x1

y x2
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Decomposition of R2

For the regression of y on both x1 and x2, the multiple R2 will be
1− σ2/var(y) (since E [y |x1, x2] = E [y |x1] = x1).

The R2 values for y regressed on either x1 or x2 separately will also be
approximately 1− σ2/var(y).

Thus R2
1 + R2

2 ≈ 2R2.
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Decomposition of R2

Case 2:
∑

j R
2
j < R2

This is more surprising, and is sometimes called enhancement.

As an example, suppose the data generating model is

y = z + ε,

but we don’t observe z (for simplicity assume E [z ] = 0). Instead, we
observe a value x1 that satisfies

x1 = z + x2,

where x2 has mean 0 and is independent of z and ε.

Since x2 is independent of z and ε, it is also independent of y , thus
R2
2 ≈ 0 for large n.
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Decomposition of R2

The following causal diagram illustrates this example:

z

y x1

x2
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Decomposition of R2 (enhancement example)

The multiple R2 of y on x1 and x2 is approximately σ2
z/(σ2

z + σ2) for
large n, since the fitted values will converge to ŷ = x1 − x2 = z .

To calculate R2
1 , first note that for the regression of y on x1, where

y , x1 ∈ Rn are data vectors

β̂ =
ĉov(y , x1)

v̂ar(x1)
→ σ2

z

σ2
z + σ2

x2

and

α̂→ 0.
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Decomposition of R2 (enhancement example)
Therefore for large n,

n−1‖y − ŷ‖2 ≈ n−1‖z + ε− σ2
zx1/(σ2

z + σ2
x2)‖2

= n−1‖σ2
x2z/(σ2

z + σ2
x2) + ε− σ2

zx2/(σ2
z + σ2

x2)‖2

= σ4
x2σ

2
z/(σ2

z + σ2
x2)2 + σ2 + σ4

zσ
2
x2/(σ2

z + σ2
x2)2

= σ2
x2σ

2
z/(σ2

z + σ2
x2) + σ2.

Therefore

R2
1 = 1− n−1‖y − ŷ‖2

n−1‖y − ȳ‖2

≈ 1−
σ2
x2σ

2
z/(σ2

z + σ2
x2) + σ2

σ2
z + σ2

=
σ2
z

(σ2
z + σ2)(1 + σ2

x2/σ
2
z )

.
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Decomposition of R2 (enhancement example)

Thus

R2
1/R

2 ≈ 1/(1 + σ2
x2/σ

2
z ),

which is strictly less than one if σ2
x2 > 0.

Since R2
2 = 0, it follows that R2 > R2

1 + R2
2 .

The reason for this is that while x2 contains no directly useful information
about y (hence R2

2 = 0), it can remove the “measurement error” in x1,
making x1 a better predictor of z .
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Decomposition of R2 (enhancement example)

We can now calculate the limiting partial R2 for adding x2 to a model
that already contains x1:

σ2
x2

σ2
x2 + σ2(1 + σ2

x2/σ
2
z )
.
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Partial R2 example 2

Suppose the design matrix satisfies

X ′X/n =

 1 0 0
0 1 r
0 r 1


and the data generating model is

y = x1 + x2 + ε

with var ε = σ2.
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Partial R2 example 2

We will calculate the partial R2 for x1, using the fact that the partial R2

is the regular R2 for regressing

(I − P−1)y

on

(I − P−1)x1

where y , x1, x2 ∈ Rn are data vectors distributed like Y , x1, and x2, and
P−1 is the projection onto span ({1, x2}).

Since this is a simple linear regression, the partial R2 can be expressed

ĉor((I − P−1)y , (I − P−1)x1)2.
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Partial R2 example 2

We will calculate the partial R2 in a setting where all conditional means
are linear. This would hold if the data are jointly Gaussian (but this is
not a necessary condition for conditional means to be linear).

The numerator of the partial R2 is the square of

ĉov((I − P−1)y , (I − P−1)x1) = y ′(I − P−1)x1/n

= (x1 + x2 + ε)′(x1 − rx2)/n

→ 1− r2.
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Partial R2 example 2

The denominator contains two factors. The first is

‖(I − P−1)x1‖2/n = x ′1(I − P−1)x1/n

= x ′1(x1 − rx2)/n

→ 1− r2.
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Partial R2 example 2

The other factor in the denominator is y ′(I − P−1)y/n:

y ′(I − P−1)y/n = (x1 + x2)′(I − P−1)(x1 + x2)/n + ε′(I − P−1)ε/n +

2ε′(I − P−1)(x1 + x2)/n

≈ (x1 + x2)′(x1 − rx2)/n + σ2

→ 1− r2 + σ2.

Thus we get that the partial R2 is approximately equal to

1− r2

1− r2 + σ2
.

If r = 1 then the result is zero (x1 has no unique explanatory power), and
if r = 0, the result is 1/(1 + σ2), indicating that after controlling for x2,
around 1/(1 + σ2) fraction of the remaining variance is explained by x1
(the rest is due to ε).

39 / 40



Summary

Each of the three R2 values can be expressed either in terms of variance
ratios, or as a squared correlation coefficient:

Multiple R2 Semi-partial R2 Partial R2

VR ‖ŷ − ȳ‖2/‖y − ȳ‖2 R2 − R2
−k (R2 − R2

−k)/(1− R2
−k)

Correlation ĉor(ŷ , y)2 ĉor(y , x⊥k )2 ĉor((I − P−k)y , x⊥k )2
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