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PREFACE 
 
 
This manual contains solutions to the odd-numbered problems and computer exercises in 
Introductory Econometrics: A Modern Approach, 4e.  Hopefully, you will find that the 
solutions are detailed enough to act as a study supplement to the text.  Rather than just 
presenting the final answer, I usually provide detailed steps, emphasizing where the 
chapter material is used in solving the problems. 
 
Some of the answers given here are subjective, and you or your instructor may have 
perfectly acceptable alternative answers or opinions. 
 
I obtained the solutions to the computer exercises using Stata, starting with version 4.0 
and ending with version 9.0.  Nevertheless, almost all of the estimation methods covered 
in the text have been standardized, and different econometrics or statistical packages 
should give the same answers to the reported degree of accuracy.  There can be 
differences when applying more advanced techniques, as conventions sometimes differ 
on how to choose or estimate auxiliary parameters.  (Examples include 
heteroskedasticity-robust standard errors, estimates of a random effects model, and 
corrections for sample selection bias.)  Any differences in estimates or test statistics 
should be practically unimportant, provided you are using a reasonably large sample size. 
 
While I have endeavored to make the solutions free of mistakes, some errors may have 
crept in.  I would appreciate hearing from students who find mistakes.  I will keep a list 
of any notable errors on the Web site for the book, 
academic.cengage.com/economics/wooldridge.  I would also like to hear from students 
who have suggestions for improving either the solutions or the problems themselves.  I 
can be reached via e-mail at wooldri1@.msu.edu.  
 
I hope that you find this solutions manual helpful when used in conjunction with the text.  
I look forward to hearing from you. 
 
                                            Jeffrey M. Wooldridge 
                                            Department of Economics 
                                            Michigan State University 
       110 Marshall-Adams Hall 
                                            East Lansing, MI  48824-1038 
 
 
 
 
 
 
 

 iv



CHAPTER 1 
 

SOLUTIONS TO PROBLEMS 
 
1.1 (i) Ideally, we could randomly assign students to classes of different sizes.  That is, each 
student is assigned a different class size without regard to any student characteristics such as 
ability and family background.  For reasons we will see in Chapter 2, we would like substantial 
variation in class sizes (subject, of course, to ethical considerations and resource constraints). 
 
 (ii) A negative correlation means that larger class size is associated with lower performance.  
We might find a negative correlation because larger class size actually hurts performance.  
However, with observational data, there are other reasons we might find a negative relationship.  
For example, children from more affluent families might be more likely to attend schools with 
smaller class sizes, and affluent children generally score better on standardized tests.  Another 
possibility is that, within a school, a principal might assign the better students to smaller classes. 
Or, some parents might insist their children are in the smaller classes, and these same parents 
tend to be more involved in their children’s education. 
 
 (iii) Given the potential for confounding factors – some of which are listed in (ii) – finding a 
negative correlation would not be strong evidence that smaller class sizes actually lead to better 
performance. Some way of controlling for the confounding factors is needed, and this is the 
subject of multiple regression analysis. 
 
1.3 It does not make sense to pose the question in terms of causality. Economists would assume 
that students choose a mix of studying and working (and other activities, such as attending class, 
leisure, and sleeping) based on rational behavior, such as maximizing utility subject to the 
constraint that there are only 168 hours in a week.  We can then use statistical methods to 
measure the association between studying and working, including regression analysis that we 
cover starting in Chapter 2.  But we would not be claiming that one variable “causes” the other.  
They are both choice variables of the student.  
 
SOLUTIONS TO COMPUTER EXERCISES 
 
C1.1 (i) The average of educ is about 12.6 years.  There are two people reporting zero years of 
education, and 19 people reporting 18 years of education. 
 
 (ii) The average of wage is about $5.90, which seems low in the year 2008. 
 
 (iii) Using Table B-60 in the 2004 Economic Report of the President, the CPI was 56.9 in 
1976 and 184.0 in 2003. 
 
 (iv) To convert 1976 dollars into 2003 dollars, we use the ratio of the CPIs, which is 

.  Therefore, the average hourly wage in 2003 dollars is roughly 
, which is a reasonable figure. 

184 / 56.9 3.23≈
3.23($5.90) ≈ $19.06
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 (v) The sample contains 252 women (the number of observations with female = 1) and 274 
men. 
 
C1.3 (i) The largest is 100, the smallest is 0. 
 
 (ii) 38 out of 1,823, or about 2.1 percent of the sample. 
  
 (iii) 17 
 
 (iv) The average of math4 is about 71.9 and the average of read4 is about 60.1.  So, at least 
in 2001, the reading test was harder to pass. 
 
 (v) The sample correlation between math4 and read4 is about .843, which is a very high 
degree of (linear) association.  Not surprisingly, schools that have high pass rates on one test 
have a strong tendency to have high pass rates on the other test. 
 
 (vi) The average of exppp is about $5,194.87.  The standard deviation is $1,091.89, which 
shows rather wide variation in spending per pupil.  [The minimum is $1,206.88 and the 
maximum is $11,957.64.] 
 



CHAPTER 2 
 

SOLUTIONS TO PROBLEMS 
 
2.1 (i) Income, age, and family background (such as number of siblings) are just a few 
possibilities.  It seems that each of these could be correlated with years of education.  (Income 
and education are probably positively correlated; age and education may be negatively correlated 
because women in more recent cohorts have, on average, more education; and number of siblings 
and education are probably negatively correlated.) 
 
 (ii) Not if the factors we listed in part (i) are correlated with educ.  Because we would like to 
hold these factors fixed, they are part of the error term.  But if u is correlated with educ then 
E(u|educ) ≠ 0, and so SLR.4 fails. 
 

2.3 (i) Let yi = GPAi, xi = ACTi, and n = 8.  Then  x = 25.875, y  = 3.2125, (xi – 
1

n

i=
∑ x )(yi – y ) = 

5.8125, and (xi – 
1

n

i=
∑ x )2 = 56.875.  From equation (2.9), we obtain the slope as 1̂β = 

5.8125/56.875  .1022, rounded to four places after the decimal.  From (2.17), ≈ 0β̂  = y  – 

1̂β x  ≈  3.2125 – (.1022)25.875 ≈  .5681.  So we can write 
 
 GPA   =  .5681 + .1022 ACT 

 n = 8. 
 

The intercept does not have a useful interpretation because ACT is not close to zero for the 
population of interest.  If ACT is 5 points higher,  increases by .1022(5) = .511. GPA
 
 (ii) The fitted values and residuals — rounded to four decimal places — are given along with 
the observation number i and GPA in the following table: 
 
 

i GPA GPA        û

1 2.8 2.7143 .0857 
2 3.4 3.0209 .3791 
3 3.0 3.2253 –.2253 
4 3.5 3.3275 .1725 
5 3.6 3.5319 .0681 
6 3.0 3.1231 –.1231 
7 2.7 3.1231 –.4231 
8 3.7 3.6341 .0659 

 
You can verify that the residuals, as reported in the table, sum to −.0002, which is pretty close to 
zero given the inherent rounding error. 
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 (iii) When ACT = 20, = .5681 + .1022(20) GPA ≈  2.61.   
 

 (iv) The sum of squared residuals, 2

1

ˆ
n

i
i

u
=
∑ , is about .4347 (rounded to four decimal places), 

and the total sum of squares, (yi – 
1

n

i=
∑ y )2, is about 1.0288.  So the R-squared from the 

regression is 
 

R2  =  1 – SSR/SST ≈  1 – (.4347/1.0288) ≈  .577. 
 
 

Therefore, about 57.7% of the variation in GPA is explained by ACT in this small sample of 
students. 
 
2.5 (i) The intercept implies that when inc = 0, cons is predicted to be negative $124.84.  This, of 
course, cannot be true, and reflects that fact that this consumption function might be a poor 
predictor of consumption at very low-income levels.  On the other hand, on an annual basis, 
$124.84 is not so far from zero. 
 
 (ii) Just plug 30,000 into the equation:  = –124.84 + .853(30,000) = 25,465.16 dollars. cons
 
 (iii) The MPC and the APC are shown in the following graph.  Even though the intercept is 
negative, the smallest APC in the sample is positive.  The graph starts at an annual income level 
of $1,000 (in 1970 dollars). 
 
 
 
 
 
 
 
 
 
 

 4



inc
1000 10000 20000 30000

.7

.728

.853

APC
MPC .9

APC

MPC

 
 
2.7 (i) When we condition on inc in computing an expectation, inc  becomes a constant.  So 
E(u|inc) = E( inc ⋅ e|inc) = inc ⋅E(e|inc) = inc ⋅0 because E(e|inc) = E(e) = 0. 
 
 (ii) Again, when we condition on inc in computing a variance, inc  becomes a constant.  So 
Var(u|inc) = Var( inc ⋅ e|inc) = ( inc )2Var(e|inc) = 2

eσ inc because Var(e|inc) = 2
eσ . 

 
 (iii) Families with low incomes do not have much discretion about spending; typically, a 
low-income family must spend on food, clothing, housing, and other necessities.  Higher income 
people have more discretion, and some might choose more consumption while others more 
saving.  This discretion suggests wider variability in saving among higher income families. 
 
 
2.9 (i) We follow the hint, noting that 1c y  = 1c y  (the sample average of  is c1 times the 

sample average of yi) and 
1 ic y

2c x  = 2c x .  When we regress c1yi on c2xi (including an intercept) we 
use equation (2.19) to obtain the slope: 
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From (2.17), we obtain the intercept as 0β  = (c1 y ) – 1β (c2 x ) = (c1 y ) – [(c1/c2) 1̂β ](c2 x ) = 

c1( y  – 1̂β x ) = c1 0β̂ ) because the intercept from regressing yi on xi is ( y  – 1̂β x ). 
 
 (ii) We use the same approach from part (i) along with the fact that 1(c y+ )  = c1 + y  and 

2(c x+ )  = c2 + x .  Therefore,  1 1( ) (ic y c y+ − + )  = (c1  +  yi) – (c1 + y ) = yi – y  and (c2 + xi) – 

2(c x+ )  = xi – x .  So c1 and c2 entirely drop out of the slope formula for the regression of (c1 + 

yi) on (c2 + xi), and 1β  = 1̂β .  The intercept is 0β  = 1( )c y+  – 1β 2(c x)+  = (c1 + y ) – 1̂β (c2 + 

x ) = ( 1
ˆy xβ− ) + c1 – c2 1̂β  = 0β̂  + c1 – c2 1̂β , which is what we wanted  to show. 

 
 (iii) We can simply apply part (ii) because 1 1log( ) log( ) log( )ic y c yi= + .  In other words, 
replace c1 with log(c1), yi with log(yi), and set c2 = 0. 
 
 (iv) Again, we can apply part (ii) with c1 = 0 and replacing c2 with log(c2) and xi with log(xi).  
If 0

ˆ  and 1
ˆβ β  are the original intercept and slope, then 1

ˆ
1β β=  and 0 0 2

ˆ ˆlog( )c 1β β β= − . 
 

2.11 (i) We would want to randomly assign the number of hours in the preparation course so that 
hours is independent of other factors that affect performance on the SAT. Then, we would 
collect information on SAT score for each student in the experiment, yielding a data set 

, where n is the number of students we can afford to have in the study.  
From equation (2.7), we should try to get as much variation in  as is feasible. 
{( , ) : 1,..., }i isat hours i n=

ihours
 
 (ii) Here are three factors:  innate ability, family income, and general health on the day of the 
exam.  If we think students with higher native intelligence think they do not need to prepare for 
the SAT, then ability and hours will be negatively correlated.  Family income would probably be 
positively correlated with hours, because higher income families can more easily afford 
preparation courses.  Ruling out chronic health problems, health on the day of the exam should 
be roughly uncorrelated with hours spent in a preparation course. 
 
 (iii) If preparation courses are effective, 1β  should be positive: other factors equal, an 
increase in hours should increase sat. 
 
 (iv) The intercept, 0β , has a useful interpretation in this example: because E(u) = 0, 0β  is the 
average SAT score for students in the population with hours = 0. 
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SOLUTIONS TO COMPUTER EXERCISES 
 
C2.1 (i) The average prate is about 87.36 and the average mrate is about .732. 
 
 (ii) The estimated equation is 
 
 prate = 83.05 + 5.86 mrate 

 n = 1,534,  R2 = .075. 
 

 (iii)  The intercept implies that, even if mrate = 0, the predicted participation rate is 83.05 
percent.  The coefficient on mrate implies that a one-dollar increase in the match rate – a fairly 
large increase – is estimated to increase prate by 5.86 percentage points.  This assumes, of 
course, that this change prate is possible (if, say, prate is already at 98, this interpretation makes 
no sense). 
 
 (iv)  If we plug mrate = 3.5 into the equation we get ˆprate = 83.05 + 5.86(3.5) = 103.59.  
This is impossible, as we can have at most a 100 percent participation rate.  This illustrates that, 
especially when dependent variables are bounded, a simple regression model can give strange 
predictions for extreme values of the independent variable.  (In the sample of 1,534 firms, only 
34 have mrate ≥ 3.5.) 
 
 (v)  mrate explains about 7.5% of the variation in prate.  This is not much, and suggests that 
many other factors influence 401(k) plan participation rates. 
 
C2.3 (i) The estimated equation is  
 
 sleep = 3,586.4 – .151 totwrk 

 n = 706,  R2 = .103. 
 

The intercept implies that the estimated amount of sleep per week for someone who does not 
work is 3,586.4 minutes, or about 59.77 hours.  This comes to about 8.5 hours per night. 
 
 (ii) If someone works two more hours per week then Δtotwrk = 120 (because totwrk is 
measured in minutes), and so = –.151(120) = –18.12 minutes.  This is only a few minutes 

a night.  If someone were to work one more hour on each of five working days, 

sleepΔ

sleepΔ =  
–.151(300) = –45.3 minutes, or about five minutes a night. 
 
C2.5 (i) The constant elasticity model is a log-log model: 
 

log(rd) = 0β  + 1β log(sales) + u, 
 

where 1β  is the elasticity of rd with respect to sales. 
 
 (ii) The estimated equation is 
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 log( )rd = –4.105 + 1.076 log(sales) 

 n  =  32,   R2  =  .910. 
 

The estimated elasticity of rd with respect to sales is 1.076, which is just above one.  A one 
percent increase in sales is estimated to increase rd by about 1.08%. 
 
C2.7 (i) The average gift is about 7.44 Dutch guilders. Out of 4,268 respondents, 2,561 did not 
give a gift, or about 60 percent. 
 
 (ii) The average mailings per year is about 2.05. The minimum value is .25 (which 
presumably means that someone has been on the mailing list for at least four years) and the 
maximum value is 3.5. 
 
 (iii) The estimated equation is 
 

2

2.01  2.65 
4,268,   .0138

gift mailsyear
n R

= +

= =
 

 
 (iv) The slope coefficient from part (iii) means that each mailing per year is associated with – 
perhaps even “causes” – an estimated 2.65 additional guilders, on average. Therefore, if each 
mailing costs one guilder, the expected profit from each mailing is estimated to be 1.65 guilders. 
This is only the average, however. Some mailings generate no contributions, or a contribution 
less than the mailing cost; other mailings generated much more than the mailing cost. 
 
 (v) Because the smallest mailsyear in the sample is .25, the smallest predicted value of gifts 
is 2.01 + 2.65(.25) ≈ 2.67. Even if we look at the overall population, where some people have 
received no mailings, the smallest predicted value is about two. So, with this estimated equation, 
we never predict zero charitable gifts. 
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CHAPTER 3 
 
SOLUTIONS TO PROBLEMS 
 
3.1 (i) hsperc is defined so that the smaller it is, the lower the student’s standing in high 
school.  Everything else equal, the worse the student’s standing in high school, the lower is 
his/her expected college GPA. 
 
 (ii) Just plug these values into the equation: 
 

colgpa  = 1.392 − .0135(20) + .00148(1050) = 2.676. 
 

 (iii) The difference between A and B is simply 140 times the coefficient on sat, because 
hsperc is the same for both students.  So A is predicted to have a score .00148(140)  .207 
higher. 

≈

 
 (iv) With hsperc fixed,  = .00148Δsat.  Now, we want to find Δsat such that 

 = .5, so .5 = .00148(Δsat) or Δsat = .5/(.00148) 

colgpaΔ

colgpaΔ ≈  338.  Perhaps not surprisingly, a 
large ceteris paribus difference in SAT score – almost two and one-half standard deviations – is 
needed to obtain a predicted difference in college GPA or a half a point. 
 
3.3 (i) If adults trade off sleep for work, more work implies less sleep (other things equal), so 

1β  < 0. 
 
 (ii) The signs of 2β  and 3β  are not obvious, at least to me.  One could argue that more 
educated people like to get more out of life, and so, other things equal, they sleep less ( 2β  < 0).  
The relationship between sleeping and age is more complicated than this model suggests, and 
economists are not in the best position to judge such things. 
 
 (iii) Since totwrk is in minutes, we must convert five hours into minutes:  Δtotwrk = 
5(60) = 300.  Then sleep is predicted to fall by .148(300) = 44.4 minutes.  For a week, 45 
minutes less sleep is not an overwhelming change. 
 
 (iv) More education implies less predicted time sleeping, but the effect is quite small.  If 
we assume the difference between college and high school is four years, the college graduate 
sleeps about 45 minutes less per week, other things equal. 
 
 (v) Not surprisingly, the three explanatory variables explain only about 11.3% of the 
variation in sleep.   One important factor in the error term is general health.  Another is marital 
status, and whether the person has children.  Health (however we measure that), marital status, 
and number and ages of children would generally be correlated with totwrk.  (For example, less 
healthy people would tend to work less.) 
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3.5 (i) No.  By definition, study + sleep + work + leisure = 168.  Therefore, if we change study, 
we must change at least one of the other categories so that the sum is still 168. 
 
 (ii) From part (i), we can write, say, study as a perfect linear function of the other 
independent variables:  study = 168 − sleep − work − leisure. This holds for every observation, 
so MLR.3 violated. 
 
 (iii) Simply drop one of the independent variables, say leisure: 
 

GPA = 0β  + 1β study + 2β sleep + 3β work + u. 
 

Now, for example, 1β  is interpreted as the change in GPA when study increases by one hour, 
where sleep, work, and u are all held fixed.  If we are holding sleep and work fixed but increasing 
study by one hour, then we must be reducing leisure by one hour.  The other slope parameters 
have a similar interpretation. 
 
3.7 Only (ii), omitting an important variable, can cause bias, and this is true only when the 
omitted variable is correlated with the included explanatory variables.  The homoskedasticity 
assumption, MLR.5, played no role in showing that the OLS estimators are unbiased.  
(Homoskedasticity was used to obtain the usual variance formulas for the ˆ

jβ .)  Further, the 
degree of collinearity between the explanatory variables in the sample, even if it is reflected in a 
correlation as high as .95, does not affect the Gauss-Markov assumptions.  Only if there is a 
perfect linear relationship among two or more explanatory variables is MLR.3 violated. 
 
3.9 (i) 1β  < 0 because more pollution can be expected to lower housing values; note that 1β  is 
the elasticity of price with respect to nox.  2β  is probably positive because rooms roughly 
measures the size of a house.  (However, it does not allow us to distinguish homes where each 
room is large from homes where each room is small.) 
 
 (ii) If we assume that rooms increases with quality of the home, then log(nox) and rooms 
are negatively correlated when poorer neighborhoods have more pollution, something that is 
often true.  We can use Table 3.2 to determine the direction of the bias.  If 2β  > 0 and 

Corr(x1,x2) < 0, the simple regression estimator 1β  has a downward bias.  But because 1β  < 0, 

this means that the simple regression, on average, overstates the importance of pollution.  [E( 1β ) 
is more negative than 1β .] 
 
 (iii) This is what we expect from the typical sample based on our analysis in part (ii).  The 
simple regression estimate, −1.043, is more negative (larger in magnitude) than the multiple 
regression estimate, −.718.  As those estimates are only for one sample, we can never know 
which is closer to 1β .  But if this is a “typical” sample, 1β  is closer to −.718. 
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3.11 From equation (3.22) we have  
 

1
1

1
2
1

1

ˆ
,

ˆ

n

i i
i

n

i
i

r y

r
β =

=

=
∑

∑
 

 
where the  are defined in the problem.  As usual, we must plug in the true model for yi: 1îr
 

1 0 1 1 2 2 3 3
1

1
2
1

1

ˆ (
.

ˆ

n

i i i i
i

n

i
i

r x x x

r

β β β β
β =

=

iu+ + + +
=

∑

∑
 

 

The numerator of this expression simplifies because 1
1

ˆ
n

i
i

r
=
∑  = 0,  = 0, and  = 

.  These all follow from the fact that the  are the residuals from the regression of 

1 2
1

ˆ
n

i i
i

r x
=
∑ 1 1

1

ˆ
n

i i
i

r x
=
∑

2
1

1

ˆ
n

i
i

r
=
∑ 1îr 1ix  on 

2ix :  the  have zero sample average and are uncorrelated in sample with 1îr 2ix .  So the numerator 

of 1β  can be expressed as 
 

2
1 1 3 1 3 1

1 1 1

ˆ ˆ .
n n n

i i i
i i i

r r x rβ β
= = =

+ + î iu∑ ∑ ∑  

 
Putting these back over the denominator gives 
 

1 3 1
1 1

1 1 3
2 2
1 1

1 1

ˆ ˆ
.

ˆ ˆ

n n

i i i
i i

n n

i i
i i

r x ru

r r
β β β = =

= =

= + +
∑ ∑

∑ ∑
 

 
Conditional on all sample values on x1, x2, and x3, only the last term is random due to its 
dependence on ui.  But E(ui) = 0, and so  
 

1 3
1

1 1 3
2
1

1

ˆ
E( ) = + ,

ˆ

n

i i
i

n

i
i

r x

r
β β β =

=

∑

∑
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which is what we wanted to show.  Notice that the term multiplying 3β  is the regression 
coefficient from the simple regression of xi3 on . 1îr

3.13 (i) For notational simplicity, define szx = 
1

( )
n

i
i

z z x
=

−∑ ;i  this is not quite the sample 

covariance between z and x because we do not divide by n – 1, but we are only using it to 
simplify notation.  Then we can write 1β  as 
 

1
1

( )
.

n

i i
i

zx

z z y

s
β =

−
=

∑
 

 
This is clearly a linear function of the yi:  take the weights to be wi = (zi − z )/szx.  To show 
unbiasedness, as usual we plug yi = 0β  + 1β xi + ui into this equation, and simplify: 
 

0 1
1

1

0 1
1 1

1
1

( )( )

( ) ( )

( )

n

i i i
i

zx
n n

i zx i
i i

zx

n

i i
i

zx

z z x u

s

z z s z z u

s

z z u

s

β β
β

β β

β

=

= =

=
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=

− + + −
=

−
= +

∑

∑ ∑

∑

i

 

 

where we use the fact that 
1

(
n

i
i

z z
=

−∑ )  = 0 always.  Now szx is a function of the zi and xi and the 

expected value of each ui is zero conditional on all zi and xi in the sample.  Therefore, conditional 
on these values,  
 

1
1 1

( )E( )
E( )

n

i i
i

zx

z z u

s 1β β β=

−
= + =

∑
 

 
because E(ui) = 0 for all i. 
 
 (ii) From the fourth equation in part (i) we have (again conditional on the zi and xi in the 
sample), 
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because of the homoskedasticity assumption [Var(ui) = σ2 for all i].  Given the definition of szx, 
this is what we wanted to show. 
 

 (iii) We know that Var( 1̂β ) = σ2/ 2

1

[ ( ) ]
n

i
i

x x
=

−∑ . he   Now we can rearrange the inequality in t

hint, drop x  from the sample covariance, and cancel n-1 everywhere, to get 2 2

1
[ (

n

i zx
i=
∑ ) ] /z z s−  ≥ 

2

1
1/[ ) ].i

i=
−∑   When we multiply through(

n

x x  by σ2 we get Var( 1β )  ≥ Var( 1̂β ), which is what 

e wanted to show. 

OLUTIONS TO COMPUTER EXERCISES 

w
 
 
S
 
C3.1 (i) Probably 2β  > 0, as more income typically means better nutrition for the mother and 
etter prenatal care. 

o higher 

he sample correlation between cigs and faminc is about −.173, indicating 
 negative correlation. 

(iii) The regressions without and with faminc are 

 

b
 
 (ii) On the one hand, an increase in income generally increases the consumption of a good, 
and cigs and faminc could be positively correlated.  On the other, family incomes are als
for families with more education, and more education and cigarette smoking tend to be 
negatively correlated.  T
a
 
 
 

119.77 .514bwght cigs= −  

21,388, .023n R= =   
and 
 

 

he 
difference is not great.  This is due to the fact that cigs and faminc are not very correlated, and 

116.97 .463 .093bwght cigs faminc= − +  

21,388, .030.n R= =  
 

The effect of cigarette smoking is slightly smaller when faminc is added to the regression, but t
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the coefficient on faminc is practically small.  (The variable faminc is measured in thousands, so 
$10,000 more in 1988 income increases predicted birth weight by only .93 ounces.) 
 
C3.3 (i) The constant elasticity equation is 
 
  log( ) 4.62 .162 log( ) .107 log( )salary sales mktval= + +

  2177, .299.n R= =
 
 (ii) We cannot include profits in logarithmic form because profits are negative for nine of 
the companies in the sample.  When we add it in levels form we get 
 
  log( ) 4.69 .161 log( ) .098 log( ) .000036salary sales mktval profits= + + +

  2177, .299.n R= =
 

The coefficient on profits is very small. Here, profits are measured in millions, so if profits 
increase by $1 billion, which means profitsΔ  = 1,000 – a huge change – predicted salary 
increases by about only 3.6%.  However, remember that we are holding sales and market value 
fixed. 
 Together, these variables (and we could drop profits without losing anything) explain 
almost 30% of the sample variation in log(salary).  This is certainly not “most” of the variation. 
 
 (iii) Adding ceoten to the equation gives 
 

log( ) 4.56 .162 log( ) .102 log( ) .000029 .012salary sales mktval profits ceoten= + + + +  

  2177, .318.n R= =
 

This means that one more year as CEO increases predicted salary by about 1.2%. 
 
 (iv) The sample correlation between log(mktval) and profits is about .78, which is fairly 
high.  As we know, this causes no bias in the OLS estimators, although it can cause their 
variances to be large.  Given the fairly substantial correlation between market value and firm 
profits, it is not too surprising that the latter adds nothing to explaining CEO salaries.  Also, 
profits is a short term measure of how the firm is doing while mktval is based on past, current, 
and expected future profitability. 
 
C3.5  The regression of educ on exper and tenure yields 
 
 educ = 13.57 − .074 exper + .048 tenure + . 1̂r

 n  =  526,   R2  =  .101. 
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Now, when we regress log(wage) on  we obtain 1̂r
 
  = 1.62 + .092  log( )wage 1̂r

 n  =  526,   R2  =  .207. 
 

As expected, the coefficient on  in the second regression is identical to the coefficient on educ 
in equation (3.19).  Notice that the R-squared from the above regression is below that in (3.19).  
In effect, the regression of log(wage) on  explains log(wage) using only the part of educ that is 
uncorrelated with exper and tenure; separate effects of exper and tenure are not included. 

1̂r

1̂r

 
C3.7 (i) The results of the regression are 
 
 10 20.36  6.23 log( )  .305 math expend lnchprg= − + −  

 n  =  408,   R2  =  .180. 
  
The signs of the estimated slopes imply that more spending increases the pass rate (holding 
lnchprg fixed) and a higher poverty rate (proxied well by lnchprg) decreases the pass rate 
(holding spending fixed).  These are what we expect. 
 
 (ii) As usual, the estimated intercept is the predicted value of the dependent variable when 
all regressors are set to zero.  Setting lnchprg = 0 makes sense, as there are schools with low 
poverty rates.  Setting log(expend) = 0 does not make sense, because it is the same as setting 
expend = 1, and spending is measured in dollars per student.  Presumably this is well outside any 
sensible range.  Not surprisingly, the prediction of a 20−  pass rate is nonsensical. 
 
 (iii) The simple regression results are 
 
 10 69.34  11.16 log( )math expend= − +  

 n  =  408,   R2  =  .030 
and the estimated spending effect is larger than it was in part (i) – almost double. 
 
 (iv) The sample correlation between lexpend and lnchprg is about .19− , which means that, 
on average, high schools with poorer students spent less per student. This makes sense, 
especially in 1993 in Michigan, where school funding was essentially determined by local 
property tax collections. 
 
 (v) We can use equation (3.23). Because Corr(x1,x2) < 0, which means , and 1 0δ < 2

ˆ 0β < , 

the simple regression estimate, 1β , is larger than the multiple regression estimate, 1̂β . Intuitively, 
failing to account for the poverty rate leads to an overestimate of the effect of spending. 
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C3.9 (i) The estimated equation is 
 

2

4.55  2.17 .0059  15.36 
4,268,   .0834

gift mailsyear giftlast propresp
n R

= − + + +

= =
 

The R-squared is now about .083, compared with about .014 for the simple regression case. 
Therefore, the variables giftlast and propresp help to explain significantly more variation in gifts 
in the sample (although still just over eight percent). 
 
 (ii) Holding giftlast and propresp fixed, one more mailing per year is estimated to increase 
gifts by 2.17 guilders. The simple regression estimate is 2.65, so the multiple regression estimate 
is somewhat smaller. Remember, the simple regression estimate holds no other factors fixed. 
 
 (iii) Because propresp is a proportion, it makes little sense to increase it by one. Such an 
increase can happen only if propresp goes from zero to one. Instead, consider a .10 increase in 
propresp, which means a 10 percentage point increase. Then, gift is estimated to be 15.36(.1) ≈ 
1.54 guilders higher. 
 
 (iv) The estimated equation is 
 

2

7.33  1.20 .261  16.20 .527 
4,268,   .2005

gift mailsyear giftlast propresp avggift
n R

= − + − + +

= =
 

 
After controlling for the average past gift level, the effect of mailings becomes even smaller: 
1.20 guilders, or less than half the effect estimated by simple regression. 
 
 (v) After controlling for the average of past gifts – which we can view as measuring the 
“typical” generosity of the person and is positively related to the current gift level – we find that 
the current gift amount is negatively related to the most recent gift. A negative relationship 
makes some sense, as people might follow a large donation with a smaller one. 
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CHAPTER 4 
 

SOLUTIONS TO PROBLEMS 
 
4.1 (i) and (iii) generally cause the t statistics not to have a t distribution under H0.  
Homoskedasticity is one of the CLM assumptions.  An important omitted variable violates 
Assumption MLR.3.  The CLM assumptions contain no mention of the sample correlations 
among independent variables, except to rule out the case where the correlation is one. 
 
4.3 (i) Holding profmarg fixed,  = .321 Δlog(sales) = (.321/100)[100 ] rdintensΔ log( )sales⋅Δ ≈  

.00321(%Δsales).  Therefore, if %Δsales = 10,  rdintensΔ ≈  .032, or only about 3/100 of a 
percentage point.  For such a large percentage increase in sales, this seems like a practically 
small effect. 
 
 (ii) H0: 1β  = 0 versus H1: 1β  > 0, where 1β  is the population slope on log(sales).  The t 
statistic is .321/.216 ≈  1.486.  The 5% critical value for a one-tailed test, with df = 32 – 3 = 29, 
is obtained from Table G.2 as 1.699; so we cannot reject H0 at the 5% level.  But the 10% critica
value is 1.311; since the t statistic is above this value, we reject H0 in favor of H1 at the 10% 
level. 

l 

 
 (iii) Not really.  Its t statistic is only 1.087, which is well below even the 10% critical value 
for a one-tailed test. 
 
4.5 (i) .412 ± 1.96(.094), or about .228 to .596. 
 
 (ii) No, because the value .4 is well inside the 95% CI. 
 
 (iii) Yes, because 1 is well outside the 95% CI. 
 
4.7 (i) While the standard error on hrsemp has not changed, the magnitude of the coefficient has 
increased by half.  The t statistic on hrsemp has gone from about –1.47 to –2.21, so now the 
coefficient is statistically less than zero at the 5% level.  (From Table G.2 the 5% critical value 
with 40 df is –1.684.  The 1% critical value is –2.423, so the p-value is between .01 and .05.) 
 
 (ii) If we add and subtract 2β log(employ) from the right-hand-side and collect terms, we 
have 
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 log(scrap) = 0β  + 1β hrsemp + [ 2β log(sales) – 2β log(employ)] 

   + [ 2β log(employ) + 3β log(employ)] + u 

  = 0β  + 1β hrsemp + 2β log(sales/employ)  

   + ( 2β  + 3β )log(employ) + u, 

where the second equality follows from the fact that log(sales/employ) = log(sales) – 
log(employ).  Defining 3θ  ≡ 2β  + 3β  gives the result. 
 
 (iii) No.  We are interested in the coefficient on log(employ), which has a t statistic of .2, 
which is very small.  Therefore, we conclude that the size of the firm, as measured by 
employees, does not matter, once we control for training and sales per employee (in a 
logarithmic functional form). 
 
 (iv) The null hypothesis in the model from part (ii) is H0: 2β  = –1.  The t statistic is [–.951 – 
(–1)]/.37 = (1 – .951)/.37  .132; this is very small, and we fail to reject whether we specify a 
one- or two-sided alternative. 

≈

 
4.9 (i) With df = 706 – 4 = 702, we use the standard normal critical value (df = ∞ in Table G.2), 
which is 1.96 for a two-tailed test at the 5% level.  Now teduc = −11.13/5.88  −1.89, so |teduc| = 
1.89 < 1.96, and we fail to reject H0: 

≈
educβ  = 0 at the 5% level.  Also, tage ≈  1.52, so age is also 

statistically insignificant at the 5% level. 
 
 (ii) We need to compute the R-squared form of the F statistic for joint significance.  But F = 
[(.113 − .103)/(1 − .113)](702/2)  3.96.  The 5% critical value in the F2,702 distribution can be 
obtained from Table G.3b with denominator df = ∞:  cv = 3.00.  Therefore, educ and age are 
jointly significant at the 5% level (3.96 > 3.00).  In fact, the p-value is about .019, and so educ 
and age are jointly significant at the 2% level. 

≈

 
 (iii) Not really.  These variables are jointly significant, but including them only changes the 
coefficient on totwrk from –.151 to –.148. 
 
 (iv) The standard t and F statistics that we used assume homoskedasticity, in addition to the 
other CLM assumptions.  If there is heteroskedasticity in the equation, the tests are no longer 
valid. 
 
4.11 (i) In columns (2) and (3), the coefficient on profmarg is actually negative, although its t 
statistic is only about –1.  It appears that, once firm sales and market value have been controlled 
for, profit margin has no effect on CEO salary. 
 
 (ii) We use column (3), which controls for the most factors affecting salary.  The t statistic on 
log(mktval) is about 2.05, which is just significant at the 5% level against a two-sided alternative.  
(We can use the standard normal critical value, 1.96.)  So log(mktval) is statistically significant.  
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Because the coefficient is an elasticity, a ceteris paribus 10% increase in market value is 
predicted to increase salary by 1%.  This is not a huge effect, but it is not negligible, either. 
 
 (iii) These variables are individually significant at low significance levels, with tceoten ≈  3.11 
and  tcomten  –2.79.  Other factors fixed, another year as CEO with the company increases salary 
by about 1.71%.  On the other hand, another year with the company, but not as CEO, lowers 
salary by about .92%.  This second finding at first seems surprising, but could be related to the 
“superstar” effect:  firms that hire CEOs from outside the company often go after a small pool of 
highly regarded candidates, and salaries of these people are bid up.  More non-CEO years with a 
company makes it less likely the person was hired as an outside superstar. 

≈

 
 
SOLUTIONS TO COMPUTER EXERCISES 
 
C4.1 (i) Holding other factors fixed,  
 

  1 1

1

log( ) ( /100)[100 log( )]
( /100)(% ),

voteA expendA expendA
expendA

β β
β

Δ = Δ = ⋅Δ
≈ Δ

 

 
where we use the fact that 100  log( )expendA⋅Δ ≈  % expendAΔ .  So 1β /100 is the (ceteris 
paribus) percentage point change in voteA when expendA increases by one percent. 
 
 (ii) The null hypothesis is H0: 2β  = – 1β , which means a z% increase in expenditure by A 
and a z% increase in expenditure by B leaves voteA unchanged.  We can equivalently write H0: 

1β  + 2β  = 0. 
 
 (iii) The estimated equation (with standard errors in parentheses below estimates) is  
 
 voteA  = 45.08  + 6.083 log(expendA)  – 6.615 log(expendB)  + .152 prtystrA   
   (3.93)  (0.382)  (0.379)  (.062) 

 n  =  173,   R2  =  .793. 
 
The coefficient on log(expendA) is very significant (t statistic ≈  15.92), as is the coefficient on 
log(expendB) (t statistic  –17.45).  The estimates imply that a 10% ceteris paribus increase in 
spending by candidate A increases the predicted share of the vote going to A by about .61 
percentage points.  [Recall that, holding other factors fixed, 

≈

eAvotΔ ≈ (6.083/100)%ΔexpendA).]  
Similarly, a 10% ceteris paribus increase in spending by B reduces  by about .66 
percentage points.  These effects certainly cannot be ignored. 

voteA

 While the coefficients on log(expendA) and log(expendB) are of similar magnitudes (and 
opposite in sign, as we expect), we do not have the standard error of 1̂β  + 2β̂ , which is what we 
would need to test the hypothesis from part (ii). 
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 (iv) Write 1θ  = 1β  + 2β , or 1β  = 1θ – 2β .  Plugging this into the original equation, and 
rearranging, gives 
 
 voteA  =  0β  + 1θ log(expendA) + 2β [log(expendB) – log(expendA)] + 3β prtystrA + u, 
 
When we estimate this equation we obtain 1θ  ≈  –.532 and se( 1θ )≈  .533.  The t statistic for the 
hypothesis in part (ii) is –.532/.533  –1.  Therefore, we fail to reject H0: ≈ 2β  = – 1β . 
 
C4.3 (i) The estimated model is 
 
 log( )price =    11.67  + .000379 sqrft   + .0289 bdrms 
   (0.10) (.000043) (.0296) 

 n = 88,  R2 = .588. 
 
Therefore, 1̂θ = 150(.000379) + .0289 = .0858, which means that an additional 150 square foot 
bedroom increases the predicted price by about 8.6%. 
 
 (ii) 2β = 1θ  – 150 1β , and so 
 
 log(price) = 0β + 1β sqrft  + ( 1θ  – 150 1β )bdrms  + u 

   = 0β + 1β (sqrft  – 150 bdrms) + 1θ bdrms + u. 
 
 (iii) From part (ii), we run the regression 
 
 log(price) on (sqrft – 150 bdrms), bdrms,  

 
and obtain the standard error on bdrms.  We already know that 1̂θ = .0858; now we also get 

se( 1̂θ ) = .0268.  The 95% confidence interval reported by my software package is .0326 to .1390 
(or about 3.3% to 13.9%). 
 
C4.5 (i) If we drop rbisyr the estimated equation becomes 
 
  log( )salary   = 11.02  + .0677 years  + .0158 gamesyr 
   (0.27) (.0121) (.0016) 

  +  .0014 bavg   + .0359 hrunsyr 
   (.0011) (.0072) 
 n  = 353,   R2 = .625. 
 
Now hrunsyr is very statistically significant (t statistic ≈  4.99), and its coefficient has increased 
by about two and one-half times. 
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 (ii) The equation with runsyr, fldperc, and sbasesyr added is  
 
 log( )salary  = 10.41  + .0700 years  + .0079 gamesyr 

 (2.00) (.0120) (.0027) 

r 

f the t dent variables, only runsyr is statistically significant (t statistic = 
174/.0051  3.41).  The estimate implies that one more run per year, other factors fixed, 

 
.  

ts 

s, bavg, fldperc, and sbasesyr are individually insignificant.  The F 
atistic for their joint significance (with 3 and 345 df) is about .69 with p-value  .56.  

d the average is about 56.16. 

 

 +  .00053 bavg   + .0232 hrunsyr 
  (.00110) (.0086) 

 +  .0174 runsyr   + .0010 fldperc  – .0064 sbasesy
  (.0051) (.0020) (.0052) 

 n  =  353,   R  = .639. 
 

2

O hree additional indepen
.0  ≈
increases predicted salary by about 1.74%, a substantial increase.  The stolen bases variable even
has the “wrong” sign with a t statistic of about –1.23, while fldperc has a t statistic of only .5
Most major league baseball players are pretty good fielders; in fact, the smallest fldperc is 800 
(which means .800).  With relatively little variation in fldperc, it is perhaps not surprising that i
effect is hard to estimate. 
 
 (iii) From their t statistic
st ≈
Therefore, these variables are jointly very insignificant. 
 
C4.7  (i) The minimum value is 0, the maximum is 99, an
 
  (ii) When phsrank is added to (4.26), we get the following: 
 

log( )  wage =  1.459  −   .0093 jc  +   .0755 totcoll  +   .0049 exper  +  .00030 phsrank 
  (0.024)     (.0070)        (.0026)                (.0002)              (.00024) 

 = 6,763,  R2 

o  equal to only 1.25; it is not statistically significant.  If we increase 
hsrank by 10, log(wage) is predicted to increase by (.0003)10 = .003.  This implies a .3% 

alue, about 1.33, but 
e coefficient magnitude is similar to (4.26).  Therefore, the base point remains unchanged:  the 

 
 
 
 n = .223 
 
S phsrank has a t statistic
p
increase in wage, which seems a modest increase given a 10 percentage point increase in 
phsrank.  (However, the sample standard deviation of phsrank is about 24.) 
 
 (iii) Adding phsrank makes the t statistic on jc even smaller in absolute v
th
return to a junior college is estimated to be somewhat smaller, but the difference is not 
significant and standard significant levels. 
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(iv) The variable id is just a worker identification number, which should be randomly 

4.9 (i) The results from the OLS regression, with standard errors in parentheses, are 

 
assigned (at least roughly).  Therefore, id should not be correlated with any variable in the 
regression equation.  It should be insignificant when added to (4.17) or (4.26).  In fact, its t 
statistic is about .54. 
 
C
 

log( )  psoda = −1.46  +  .073 prpblck  +   .137 log(income)  +   .380 prppov 
   

n = 401,  R2 = .087 

he p-value for testing H0: 

  (0.29)     (.031)        (.027)                (.133)             
 
 
 

1 0β =T  against the two-sided alternative is about .018, so that we 

(ii) The correlation is about −.84, indicating a strong degree of multicollinearity.  Yet each 

 
(iii) The OLS regression results when log(hseval) is added are  

reject H0 at the 5% level but not at the 1% level. 
 
 
coefficient is very statistically significant: the t statistic for log( )

ˆ
incomeβ  is about 5.1 and that for 

β̂  is about 2.86 (two-sided p-value = .004). prppov

 
 
  log( )  psoda = −.84  +   .098 prpblck  −   .053 log(income)   

     

 +  .052 prppov  +   .121 log(hseval) 
 

n = 401,  R2 = .184 

he coefficient on log(hseval) is an elasticity: a one percent increase in housing value, holding 

(iv) Adding log(hseval) makes log(income) and prppov individually insignificant (at even the 

at 

(v) Because the regression in (iii) contains the most controls, log(hseval) is individually 
sign  It 

e 

   (.29)     (.029)        (.038)                       
 
 
 (.134) (.018) 
 
 
 
T
the other variables fixed, increases the predicted price by about .12 percent.  The two-sided p-
value is zero to three decimal places. 
 
 
15% significance level against a two-sided alternative for log(income), and prppov is does not 
have a t statistic even close to one in absolute value).  Nevertheless, they are jointly significant 
the 5% level because the outcome of the F2,396 statistic is about 3.52 with p-value = .030.  All of 
the control variables – log(income), prppov, and log(hseval) – are highly correlated, so it is not 
surprising that some are individually insignificant. 
 

ificant, and log(income) and  prppov are jointly significant, (iii) seems the most reliable. 
holds fixed three measure of income and affluence.  Therefore, a reasonable estimate is that if th
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proportion of blacks increases by .10, psoda is estimated to increase by 1%, other factors held 
fixed. 



CHAPTER 5 
 

SOLUTIONS TO PROBLEMS 
 
5.1  Write y = 0β  + 1β x1 + u, and take the expected value:  E(y) = 0β  + 1β E(x1) + E(u), or µy = 

0β  + 1β µx since E(u) = 0, where µy = E(y) and  µx = E(x1).  We can rewrite this as 0β  = µy - 

1β µx.  Now, 0β̂  = y  − 1̂β 1x .  Taking the plim of this we have plim( 0β̂ ) = plim( y  − 1̂β 1x ) = 

plim( y ) – plim( 1̂β ) ⋅plim( 1x ) = µy − 1β µx, where we use the fact that plim( y ) = µy and 

plim( 1x ) = µx by the law of large numbers, and plim( 1̂β ) = 1β .  We have also used the parts of 
Property PLIM.2 from Appendix C. 
 
5.3  The variable cigs has nothing close to a normal distribution in the population.  Most people 
do not smoke, so cigs = 0 for over half of the population.  A normally distributed random 
variable takes on no particular value with positive probability.  Further, the distribution of cigs is 
skewed, whereas a normal random variable must be symmetric about its mean. 
 
SOLUTIONS TO COMPUTER EXERCISES 
 
C5.1 (i)  The estimated equation is  
 
 wage  = −2.87 + .599 educ + .022 exper + .169 tenure 
   (0.73) (.051)  (.012)  (.022) 

 n = 526,    R2 = .306,   σ̂  = 3.085. 
 
Below is a histogram of the 526 residual, , i = 1, 2 , ..., 526.  The histogram uses 27 bins, 
which is suggested by the formula in the Stata manual for 526 observations.  For comparison, the 
normal distribution that provides the best fit to the histogram is also plotted. 

ˆiu
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 (ii)  With log(wage) as the dependent variable the estimated equation is  
 
 log( )wage   = .284 + .092 educ + .0041 exper + .022 tenure 
   (.104)  (.007)  (.0017)  (.003) 

 n = 526,    R2 = .316,   σ̂  = .441. 
 
The histogram for the residuals from this equation, with the best-fitting normal distribution 
overlaid, is given below: 
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 (iii)  The residuals from the log(wage) regression appear to be more normally distributed.  
Certainly the histogram in part (ii) fits under its comparable normal density better than in part (i), 
and the histogram for the wage residuals is notably skewed to the left.  In the wage regression 
there are some very large residuals (roughly equal to 15) that lie almost five estimated standard 
deviations (σ̂  = 3.085) from the mean of the residuals, which is identically zero, of course.  
Residuals far from zero does not appear to be nearly as much of a problem in the log(wage) 
regression. 
 
C5.3 We first run the regression colgpa on cigs, parity, and faminc using only the 1,191 
observations with nonmissing observations on motheduc and fatheduc.  After obtaining these 
residuals, , these are regressed on cigsi, parityi, faminci, motheduci, and fatheduci, where, of 
course, we can only use the 1,197 observations with nonmissing values for both motheduc and 
fatheduc.  The R-squared from this regression, 

iu

2
uR , is about .0024.  With 1,191 observations, the 

chi-square statistic is (1,191)(.0024) ≈   2.86.  The p-value from the 2
2χ  distribution is about 

.239, which is very close to .242, the p-value for the comparable F test.  
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CHAPTER 6 
 

SOLUTIONS TO PROBLEMS 
 
6.1 The generality is not necessary.  The t statistic on roe2 is only about −.30, which shows that 
roe2 is very statistically insignificant.  Plus, having the squared term has only a minor effect on 
the slope even for large values of roe.  (The approximate slope is .0215 − .00016 roe, and even 
when roe = 25 – about one standard deviation above the average roe in the sample – the slope is 
.211, as compared with .215 at roe = 0.) 
 
6.3 (i) The turnaround point is given by 1̂β /(2| 2β̂ |), or .0003/(.000000014) ≈  21,428.57; 
remember, this is sales in millions of dollars. 
 
 (ii) Probably.  Its t statistic is about –1.89, which is significant against the one-sided 
alternative H0: 1β  < 0 at the 5% level (cv ≈  –1.70 with df = 29).  In fact, the p-value is about 
.036. 
 
 (iii) Because sales gets divided by 1,000 to obtain salesbil, the corresponding coefficient gets 
multiplied by 1,000:  (1,000)(.00030) = .30.  The standard error gets multiplied by the same 
factor.  As stated in the hint, salesbil2 = sales/1,000,000, and so the coefficient on the quadratic 
gets multiplied by one million:  (1,000,000)(.0000000070) = .0070; its standard error also gets 
multiplied by one million.  Nothing happens to the intercept (because rdintens has not been 
rescaled) or to the R2:  
 
 nrdintens  = 2.613 + .30 salesbil – .0070 salesbil2 
   (0.429)  (.14)  (.0037)  

 n = 32,    R2 = .1484. 
 
 (iv) The equation in part (iii) is easier to read because it contains fewer zeros to the right of 
the decimal.  Of course the interpretation of the two equations is identical once the different 
scales are accounted for. 
 
6.5 This would make little sense.  Performances on math and science exams are measures of 
outputs of the educational process, and we would like to know how various educational inputs 
and school characteristics affect math and science scores.  For example, if the staff-to-pupil ratio 
has an effect on both exam scores, why would we want to hold performance on the science test 
fixed while studying the effects of staff on the math pass rate?  This would be an example of 
controlling for too many factors in a regression equation.  The variable scill could be a dependent 
variable in an identical regression equation. 
 
6.7 The second equation is clearly preferred, as its adjusted R-squared is notably larger than that 
in the other two equations.  The second equation contains the same number of estimated 
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parameters as the first, and the one fewer than the third.  The second equation is also easier to 
interpret than the third. 
 
6.9 (i) Because ˆexp( 1.96 ) 1σ− <

2ˆ / 2) exp(1.96

 and , the point prediction is always above the 
lower bound. The only issue is whether the point prediction is below the upper bound. This is the 
case when 

2ˆexp( / 2) 1σ >

ˆexp( )σ σ≤ or, taking logs, 2ˆ ˆ/ 2 1.96σ σ≤ , or ˆ 2(1.96) 3.92σ ≤ =
ˆ 3.92

. 
Therefore, the point prediction is in the approximate 95% prediction interval for σ ≤ . 
Because σ̂  is the estimated standard deviation in the regression with log(y) as the dependent 
variable, 3.92 is a very large value for the estimated standard deviation of the error, which is on 
the order of 400 percent. Most of the time, the estimated SER is well below that. 
 
 (ii) In the CEO salary regression, ˆ .505σ = , which is well below 3.92. 
 
 
SOLUTIONS TO COMPUTER EXERCISES 
 
C6.1 (i) The causal (or ceteris paribus) effect of dist on price means that 1β  ≥ 0:  all other 
relevant factors equal, it is better to have a home farther away from the incinerator.  The 
estimated equation is 
 
 nlog( )price  = 8.05 + .365 log(dist) 
   (0.65)  (.066) 

 n = 142,  R2 = .180,  2R  = .174, 
 
which means a 1% increase in distance from the incinerator is associated with a predicted price 
that is about .37% higher. 
 
 (ii) When the variables log(inst), log(area), log(land), rooms, baths, and age are added to the 
regression, the coefficient on log(dist) becomes about .055 (se ≈  .058).  The effect is much 
smaller now, and statistically insignificant.  This is because we have explicitly controlled for 
several other factors that determine the quality of a home (such as its size and number of baths) 
and its location (distance to the interstate).  This is consistent with the hypothesis that the 
incinerator was located near less desirable homes to begin with. 
 
 (iii) When [log(inst)]2 is added to the regression in part (ii), we obtain (with the results only 
partially reported) 
 
 nlog( )price  = –3.32 + .185 log(dist) + 2.073 log(inst) – .1193 [log(inst)]2  + …  
   (2.65)  (.062)  (0.501)  (.0282) 

 n = 142,  R2 = .778,  2R  = .764. 
 
The coefficient on log(dist) is now very statistically significant, with a t statistic of about three.  
The coefficients on log(inst) and [log(inst)]2 are both very statistically significant, each with t 
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statistics above four in absolute value.  Just adding [log(inst)]2 has had a very big effect on the 
coefficient important for policy purposes.  This means that distance from the incinerator and 
distance from the interstate are correlated in some nonlinear way that also affects housing price. 
 We can find the value of log(inst) where the effect on log(price) actually becomes negative:  
2.073/[2(.1193)]  8.69.  When we exponentiate this we obtain about 5,943 feet from the 
interstate.  Therefore, it is best to have your home away from the interstate for distances less than 
just over a mile.  After that, moving farther away from the interstate lowers predicted house 
price. 

≈

 
 (iv) The coefficient on [log(dist)]2, when it is added to the model estimated in part (iii), is 
about -.0365, but its t statistic is only about -.33.  Therefore, it is not necessary to add this 
complication. 
 
C6.3 (i) Holding exper (and the elements in u) fixed, we have 
 
 1 3 1 3log( ) ( ) ( ) ,wage educ educ exper exper educβ β β βΔ = Δ + Δ = + Δ  
 
or 

 1 3
log( ) ( )wage exper

educ
β βΔ

= +
Δ

.  

 
This is the approximate proportionate change in wage given one more year of education. 
 
 (ii) H0: 3β  = 0.  If we think that education and experience interact positively – so that people 
with more experience are more productive when given another year of education – then 3β  > 0 is 
the appropriate alternative. 
 
 (iii) The estimated equation is 
 
 nlog( )wage  = 5.95 + .0440 educ – .0215 exper + .00320 educ ⋅ exper 
   (0.24)  (.0174)  (.0200)  (.00153) 

 n = 935,   R2 = .135,   2R  = .132. 
 
The t statistic on the interaction term is about 2.13,which gives a p-value below .02 against H1: 

3β  > 0.  Therefore, we reject H0: 3β  = 0 against H1: 3β  > 0 at the 2% level. 
 
 (iv) We rewrite the equation as 
 

log(wage)  =  0β  + 1θ educ + 2β exper + 3β educ(exper – 10) + u, 
 

and run the regression log(wage) on educ, exper, and educ(exper – 10).  We want the coefficient 
on educ.  We obtain 1̂θ ≈  .0761 and se( 1̂θ )≈  .0066.  The 95% CI for 1θ  is about .063 to .089. 
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C6.5 (i) The results of estimating the log-log model (but with bdrms in levels) are 
 
 nlog( )price  = 5.61 + .168 log(lotsize) + .700 log (sqrft) + .037 bdrms 
   (0.65)  (.038)  (.093)    (.028) 

 n = 88,   R2 = .634,   2R  = .630. 
 
 (ii) With lotsize = 20,000, sqrft = 2,500, and bdrms = 4, we have 
 

nlprice   =  5.61 + .168 log(20,000) + .700⋅ ⋅ log(2,500) + .037(4)  12.90 ≈
 

where we use lprice to denote log(price).  To predict price, we use the equation ˆprice  = 

0α̂ exp( ), where nlprice 0α̂  is the slope on  ≡ exp(ˆ im nlprice ) from the regression pricei on , i = 
1,2, … , 88 (without an intercept).  When we do this regression we get 

ˆ im

0α̂ ≈  1.023.  Therefore, 

for the values of the independent variables given above, nprice ≈  (1.023)exp(12.90)  $409,519 
(rounded to the nearest dollar).  If we forget to multiply by 

≈

0α̂  the predicted price would be 
about $400,312. 
 
 (iii) When we run the regression with all variables in levels, the R-squared is about .672.  
When we compute the correlation between pricei and the  from part (ii), we obtain about .859.  
The square of this, or roughly .738, is the comparable goodness-of-fit measure for the model 
with log(price) as the dependent variable.  Therefore, for predicting price, the log model is 
notably better. 

ˆ im

 
C6.7 (i) If we hold all variables except priGPA fixed and use the usual approximation 
Δ(priGPA2)  2(priGPA)⋅ΔpriGPA, then we have ≈
 

  
2

2 4 6

2 4 6

( ) ( )
( 2 ) ;

stndfnl priGPA priGPA priGPA atndrte
priGPA atndrte priGPA

β β β
β β β

Δ = Δ + Δ + Δ
≈ + + Δ

 
dividing by ∆priGPA gives the result.  In equation (6.19) we have 2β̂  = −1.63, 4β̂  = .296, and 

6β̂ = .0056.  When priGPA = 2.59 and atndrte = .82 we have 
 

n
1.63 2(.296)(2.59) .0056(.82) .092.stndfnl

priGPA
Δ

= − + + ≈−
Δ

 

 
 (ii) First, note that (priGPA – 2.59)2 = priGPA2 – 2(2.59)priGPA + (2.59)2 and 
priGPA(atndrte − .82) = priGPA ⋅atndrte – (.82)priGPA.  So we can write equation 6.18) as 
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atndrte priGPA ACT priGPA

ACT priGPA atndrte u

β β

θ β θ β β

β β

+ + −

≡ + + + + −

+ + − +

+

 

 
When we run the regression associated with this last model, we obtain 2̂θ ≈  -.091 [which differs 

from part (i) by rounding error] and se( 2̂θ ) ≈  .363.  This implies a very small t statistic for 2̂θ . 
 
C6.9 (i) The estimated equation is  
 
 npoints  = 35.22  +  2.364 exper − .0770 exper2 − 1.074 age − 1.286 coll 
   (6.99)     (.405)  (.0235)  (.295) (.451) 

 n = 269,   R2 = .141,   2R  = .128. 
 
 (ii) The turnaround point is 2.364/[2(.0770)] ≈ 15.35.  So, the increase from 15 to 16 years of 
experience would actually reduce salary.  This is a very high level of experience, and we can 
essentially ignore this prediction: only two players in the sample of 269 have more than 15 years 
of experience. 
 
 (iii) Many of the most promising players leave college early, or, in some cases, forego 
college altogether, to play in the NBA.  These top players command the highest salaries.  It is not 
more college that hurts salary, but less college is indicative of super-star potential. 
 
 (iv) When age2 is added to the regression from part (i), its coefficient is .0536 (se = .0492).  
Its t statistic is barely above one, so we are justified in dropping it.  The coefficient on age in the 
same regression is –3.984 (se = 2.689).  Together, these estimates imply a negative, increasing, 
return to age.  The turning point is roughly at 74 years old.  In any case, the linear function of 
age seems sufficient. 
 
 (v) The OLS results are  
 
   6.78  +   .078 points  +   .218 exper  −   .0071 exper2  − .048 age  −   .040 coll nlog( )wage =
  (.85)  (.007) (.050) (.0028) (.035) (.053) 
 
 n = 269, R2 = .488, 2R = .478 
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 (vi) The joint F statistic produced by Stata is about 1.19.  With 2 and 263 df, this gives a p-
value of roughly .31.  Therefore, once scoring and years played are controlled for, there is no 
evidence for wage differentials depending on age or years played in college. 
 
C6.11 (i) The results of the OLS regression are 
 
 necolbs =   1.97    −   2.93 ecoprc   +   3.03 regprc 
 (0.38)  (0.59)     (0.71)  
 
 n = 660, R2 = .036, 2R = .034 
 
As predicted by economic theory, the own price effect is negative and the cross price effect is 
positive.  In particular, an increase in ecoprc of .10, or 10 cents per pound, reduces the estimated 
demand for eco-labeled apples by about .29 lbs.  A ceteris paribus increase of 10 cents per lb. for 
regular applies increases the estimated demand for eco-labeled apples by about .30 lbs.  These 
effects, which are essentially the same magnitude but of opposite sign, are fairly large. 
 
 (ii) Each price variable is individually statistically significant with t statistics greater than 
four (in absolute value) in both cases.  The p-values are zero to at least three decimal places. 
 
 (iii) The fitted values range from a low of about .86 to a high of about 2.09.  This is much 
less variation than ecoblbs itself, which ranges from 0 to 42 (although 42 is a bit of an outlier).  
There are 248 out of 660 observations with ecolbs = 0 and these observations are clearly not 
explained well by the model. 
 
 (iv) The R-squared is only about 3.6% (and it does not really matter whether we use the usual 
or adjusted R-squared).  This is a very small explained variation in ecolbs.  So the two price 
variables do not do a good job of explaining why ecolbsi varies across families. 
 
 (v) When faminc, hhsize, educ, and age are added to the regression, the R-squared only 
increases to about .040 (and the adjusted R-squared falls from .034 to .031).  The p-value for the 
joint F test (with 4 and 653 df) is about .63, which provides no evidence that these additional 
variables belong in the regression.  Evidently, in addition to the two price variables, the factors 
that explain variation in ecolbs (which is, remember, a counterfactual quantity), are not captured 
by the demographic and economic variables collected in the survey.  Almost 97 percent of the 
variation is due to unobserved “taste” factors. 
 
C6.13 (i) The estimated equation is 
 
   91.93    +   3.52 lexppp   −   5.40 lenroll    −  .449 lunch n4math =
 (19.96)  (2.10)     (0.94) (.015) 
 
 n = 1,692, R2 = .3729, 2R = .3718 
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The lenroll and lunch variables are individually significant at the 5% level, regardless of whether 
we use a one-sided or two-sided test; in fact, their p-values are very small. But lexppp, with t = 
1.68, is not significant against a two-sided alternative. Its one-sided p-value is about .047, so it is 
statistically significant at the 5% level against the positive one-sided alternative. 
 
 (ii) The range of fitted values is from about 42.41 to 92.67, which is much narrower than the 
rage of actual math pass rates in the sample, which is from zero to 100. 
 
 (iii) The largest residual is about 51.42, and it belongs to building code 1141. This residual is 
the difference between the actual pass rate and our best prediction of the pass rate, given the 
values of spending, enrollment, and the free lunch variable. If we think that per pupil spending, 
enrollment, and the poverty rate are sufficient controls, the residual can be interpreted as a “value 
added” for the school. That is, for school 1141, its pass rate is over 51 points higher than we 
would expect, based on its spending, size, and student poverty. 
 
 (iv) The joint F statistic, with 3 and 1,685 df, is about .52, which gives p-value ≈ .67. 
Therefore, the quadratics are jointly very insignificant, and we would drop them from the model. 
 
 (v) The beta coefficients for lexppp, lenroll, and lunch are roughly .035, −.115, and −.613, 
respectively. Therefore, in standard deviation units, lunch has by far the largest effect. The 
spending variable has the smallest effect. 
 



CHAPTER 7 
 

SOLUTIONS TO PROBLEMS 
 
7.1 (i) The coefficient on male is 87.75, so a man is estimated to sleep almost one and one-half 
hours more per week than a comparable woman.  Further, tmale = 87.75/34.33 ≈ 2.56, which is 
close to the 1% critical value against a two-sided alternative (about 2.58).  Thus, the evidence for 
a gender differential is fairly strong. 
 
 (ii) The t statistic on totwrk is −.163/.018 ≈ −9.06, which is very statistically significant.  The 
coefficient implies that one more hour of work (60 minutes) is associated with .163(60) ≈ 9.8 
minutes less sleep. 
 
 (iii) To obtain 2

rR , the R-squared from the restricted regression, we need to estimate the 
model without age and age2.  When age and age2  are both in the model, age has no effect only if 
the parameters on both terms are zero. 
 
7.3 (i) The t statistic on hsize2 is over four in absolute value, so there is very strong evidence that 
it belongs in the equation.  We obtain this by finding the turnaround point;  this is the value of 
hsize that maximizes  (other things fixed):  19.3/(2ˆsat ⋅2.19) ≈ 4.41.  Because hsize is measured 
in hundreds, the optimal size of graduating class is about 441. 
 
 (ii) This is given by the coefficient on female (since black = 0):  nonblack females have SAT 
scores about 45 points lower than nonblack males.  The t statistic is about –10.51, so the 
difference is very statistically significant.  (The very large sample size certainly contributes to 
the statistical significance.) 
 
 (iii) Because female = 0, the coefficient on black implies that a black male has an estimated 
SAT score almost 170 points less than a comparable nonblack male.  The t statistic is over 13 in 
absolute value, so we easily reject the hypothesis that there is no ceteris paribus difference. 
 
 (iv) We plug in black = 1, female = 1 for black females and black = 0 and female = 1 for 
nonblack females.  The difference is therefore –169.81 + 62.31 = −107.50.  Because the estimate 
depends on two coefficients, we cannot construct a t statistic from the information given.  The 
easiest approach is to define dummy variables for three of the four race/gender categories and 
choose nonblack females as the base group.  We can then obtain the t statistic we want as the 
coefficient on the black female dummy variable. 
 
7.5 (i) Following the hint,  = colGPA 0β̂  + 0̂δ (1 – noPC) + 1̂β hsGPA + 2β̂ ACT = ( 0β̂  + 0̂δ ) − 

0̂δ noPC + 1̂β hsGPA + 2β̂ ACT.  For the specific estimates in equation (7.6), 0β̂  = 1.26 and 0̂δ  = 
.157, so the new intercept is 1.26 + .157 = 1.417.  The coefficient on noPC is –.157. 
 
 (ii) Nothing happens to the R-squared.  Using noPC in place of PC is simply a different way 
of including the same information on PC ownership. 
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 (iii) It makes no sense to include both dummy variables in the regression:  we cannot hold 
noPC fixed while changing PC.  We have only two groups based on PC ownership so, in 
addition to the overall intercept, we need only to include one dummy variable.  If we try to 
include both along with an intercept we have perfect multicollinearity (the dummy variable trap). 
 
7.7 (i) Write the population model underlying (7.29) as  
 
  inlf  =  0β  + 1β nwifeinc + 2β educ + 3β exper + 4β exper2 + 5β age 
    + 6β kidslt6 + 7β kidsage6 + u,    
 
plug in inlf = 1 – outlf, and rearrange: 
 
  1 – outlf  =  0β  + 1β nwifeinc + 2β educ + 3β exper + 4β exper2 + 5β age 
   + 6β kidslt6 + 7β kidsage6 + u, 
or 
  outlf  =  (1 − 0β ) − 1β nwifeinc − 2β educ − 3β exper  − 4β exper2 − 5β age 
   − 6β kidslt6 − 7β kidsage6 − u, 
 
The new error term, −u, has the same properties as u.  From this we see that if we regress outlf on 
all of the independent variables in (7.29), the new intercept is 1 − .586 = .414 and each slope 
coefficient takes on the opposite sign from when inlf is the dependent variable.  For example, the 
new coefficient on educ is −.038 while the new coefficient on kidslt6 is .262. 
 
 (ii) The standard errors will not change.  In the case of the slopes, changing the signs of the 
estimators does not change their variances, and therefore the standard errors are unchanged (but 
the t statistics change sign).  Also, Var(1 − 0β̂ ) = Var( 0β̂ ), so the standard error of the intercept 
is the same as before. 
 
 (iii) We know that changing the units of measurement of independent variables, or entering 
qualitative information using different sets of dummy variables, does not change the R-squared.  
But here we are changing the dependent variable.  Nevertheless, the R-squareds from the 
regressions are still the same.  To see this, part (i) suggests that the squared residuals will be 
identical in the two regressions.  For each i the error in the equation for outlfi is just the negative 
of the error in the other equation for inlfi, and the same is true of the residuals.  Therefore, the 
SSRs are the same.  Further, in this case, the total sum of squares are the same.  For outlf we 
have  
 

SST = 2 2

1 1
( ) [(1 ) (1 )]

n n

i i
i i

outlf outlf inlf inlf
= =

− = − − −∑ ∑ = 2 2

1 1
( ) (

n n

i i
i i

inlf inlf inlf inlf
= =

− + = −∑ ∑ ) ,  

 
which is the SST for inlf.  Because R2 = 1 – SSR/SST, the R-squared is the same in the two 
regressions. 
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7.9 (i) Plugging in u = 0 and d = 1 gives 1 0 0 1( ) ( ) ( )1f z zβ δ β δ= + + + . 
 
 (ii) Setting *

0 1( ) ( )*f z f z=  gives  or * *
0 1 0 0 1 1( ) (z zβ β β δ β δ+ = + + + ) *

0 10 zδ δ= + .  
Therefore, provided 1 0δ ≠ , we have *

0 1/z δ δ= − *z.  Clearly, is positive if and only if 0 / 1δ δ  is 
negative, which means 0  and 1δ δ  must have opposite signs. 
 
 (iii) Using part (ii) we have  years. * .357 / .030 11.9totcoll = =
 
 (iv) The estimated years of college where women catch up to men is much too high to be 
practically relevant.  While the estimated coefficient on female totcoll⋅  shows that the gap is 
reduced at higher levels of college, it is never closed – not even close.  In fact, at four years of 
college, the difference in predicted log wage is still .357 .030(4) .237− + = − , or about 21.1% less 
for women. 
 
 
SOLUTIONS TO COMPUTER EXERCISES 
 
C7.1 (i) The estimated equation is 
 
 colGPA  = 1.26 + .152 PC + .450 hsGPA + .0077 ACT − .0038 mothcoll 
   (0.34)  (.059)  (.094)  (.0107)  (.0603) 

  + .0418 fathcoll 
   (.0613) 

 n = 141 ,    R2 = .222. 
 
The estimated effect of PC is hardly changed from equation (7.6), and it is still very significant, 
with tpc  2.58. ≈
 
 (ii) The F test for joint significance of mothcoll and fathcoll, with 2 and 135 df, is about .24 
with p-value  .78; these variables are jointly very insignificant.  It is not surprising the 
estimates on the other coefficients do not change much when mothcoll and fathcoll are added to 
the regression. 

≈

 
 (iii) When hsGPA2 is added to the regression, its coefficient is about .337 and its t statistic is 
about 1.56.  (The coefficient on hsGPA is about –1.803.)  This is a borderline case.  The 
quadratic in hsGPA has a U-shape, and it only turns up at about hsGPA* = 2.68, which is hard to 
interpret.  The coefficient of main interest, on PC, falls to about .140 but is still significant.  
Adding hsGPA2 is a simple robustness check of the main finding. 
 
C7.3 (i) H0: 13β = 0.  Using the data in MLB1.RAW gives 13β̂  ≈  .254, se( 13β̂ )  .131.  The t 
statistic is about 1.94, which gives a p-value against a two-sided alternative of just over .05.  

≈
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Therefore, we would reject H0 at just about the 5% significance level.  Controlling for the 
performance and experience variables, the estimated salary differential between catchers and 
outfielders is huge, on the order of 100⋅[exp(.254) – 1] ≈  28.9% [using equation (7.10)]. 
 
 (ii) This is a joint null, H0: 9β  = 0, 10β  = 0, …, 13β  = 0.  The F statistic, with 5 and 339 df, is 
about 1.78, and its p-value is about .117.  Thus, we cannot reject H0 at the 10% level. 
 
 (iii) Parts (i) and (ii) are roughly consistent.  The evidence against the joint null in part (ii) is 
weaker because we are testing, along with the marginally significant catcher, several other 
insignificant variables (especially thrdbase and shrtstop, which has absolute t statistics well 
below one). 
 
C7.5 The estimated equation is 
 
 log( )salary  = 4.30 + .288 log(sales) + .0167 roe − .226 rosneg 
   (0.29)  (.034)    (.0040)  (.109) 

 n = 209,   R2 = .297,   2R = .286. 
 
The coefficient on rosneg implies that if the CEO’s firm had a negative return on its stock over 
the 1988 to 1990 period, the CEO salary was predicted to be about 22.6% lower, for given levels 
of sales and roe.  The t statistic is about –2.07, which is significant at the 5% level against a two-
sided alternative. 
 
C7.7 (i) When educ = 12.5, the approximate proportionate difference in estimated wage between 
women and men is −.227 − .0056(12.5) = −.297.  When educ = 0, the difference is −.227.  So the 
differential at 12.5 years of education is about 7 percentage points greater. 
 
 (ii) We can write the model underlying (7.18) as 
 
 log(wage) = 0β  + 0δ  female + 1β educ + 1δ  female ⋅ educ + other factors 

  = 0β  + ( 0δ  + 12.5 1δ ) female + 1 educ + 1δ  female ⋅ (educ – 12.5) β

    + other factors 

  ≡ 0β  + 0θ  female + 1β educ +  female ⋅ (educ – 12.5) + other factors, 1δ

 

where 0θ  ≡ 0δ  + 12.5 1δ  is the gender differential at 12.5 years of education.  When we run this 
regression we obtain about –.294 as the coefficient on female (which differs from –.297 due to 
rounding error).  Its standard error is about .036. 
 
 (iii) The t statistic on female from part (ii) is about –8.17, which is very significant.  This is 
because we are estimating the gender differential at a reasonable number of years of education, 
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12.5, which is close to the average.  In equation (7.18), the coefficient on female is the gender 
differential when educ = 0.  There are no people of either gender with close to zero years of 
education, and so we cannot hope – nor do we want to – to estimate the gender differential at 
educ = 0. 
 
C7.9 (i) About .392, or 39.2%. 
 
 (ii) The estimated equation is  
 
 401e k  =  −.506 + .0124 inc  − .000062 inc2  +  .0265 age  −  .00031 age2 − .0035 male 
   (.081)  (.0006)  (.000005)    (.0039)  (.00005)  (.0121) 

 n = 9,275,   R2 = .094. 
 
 (iii) 401(k) eligibility clearly depends on income and age in part (ii).  Each of the four terms 
involving inc and age have very significant t statistics.  On the other hand, once income and age 
are controlled for, there seems to be no difference in eligibility by gender.  The coefficient on 
male is very small – at given income and age, males are estimated to have a .0035 lower 
probability of being 401(k) eligible – and it has a very small t statistic. 
 
 (iv) Somewhat surprisingly, out of 9,275 fitted values, none is outside the interval [0,1].  The 
smallest fitted value is about .030 and the largest is about .697.  This means one theoretical 
problem with the LPM – the possibility of generating silly probability estimates – does not 
materialize in this application. 
 
 (v) Using the given rule, 2,460 families are predicted to be eligible for a 401(k) plan. 
 
 (vi) Of the 5,638 families actually ineligible for a 401(k) plan, about 81.7 are correctly 
predicted not to be eligible.  Of the 3,637 families actually eligible, only 39.3 percent are 
correctly predicted to be eligible. 
 
 (vii) The overall percent correctly predicted is a weighted average of the two percentages 
obtained in part (vi).  As we saw there, the model does a good job of predicting when a family is 
ineligible.  Unfortunately, it does less well – predicting correctly less than 40% of the time – in 
predicting that a family is eligible for a 401(k). 
    
 (viii) The estimated equation is  
 
 401e k  =  −.502 + .0123 inc  − .000061 inc2  +  .0265 age  −  .00031 age2  
   (.081)  (.0006)  (.000005)    (.0039)  (.00005)   

− .0038 male  +   .0198 pira 
  (.0121)   (.0122) 

 n = 9,275,   R2 = .095. 
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The coefficient on pira means that, other things equal, IRA ownership is associated with about a 
.02 higher probability of being eligible for a 401(k) plan.  However, the t statistic is only about 
1.62, which gives a two-sided p-value = .105.  So pira is not significant at the 10% level against 
a two-sided alternative. 
 
C7.11 (i) The average is 19.072, the standard deviation is 63.964, the smallest value is –502.302, 
and the largest value is 1,536.798.  Remember, these are in thousands of dollars. 
 
 (ii) This can be easily done by regressing nettfa on e401k and doing a t test on ; the 
estimate is the average difference in nettfa for those eligible for a 401(k) and those not eligible.  
Using the 9,275 observations gives  Therefore, we strongly 
reject the null hypothesis that there is no difference in the averages.  The coefficient implies that, 
on average, a family eligible for a 401(k) plan has $18,858 more on net total financial assets. 

ˆ
e401kβ

ˆ 18.858 and 14.01.e401k e401ktβ = =

 
 (iii) The equation estimated by OLS is  
 
 nettfa   = 23.09  +  9.705 e401k   −   .278 inc  +  .0103 inc2  −   1.972 age  +   .0348 age2 
  (9.96)  (1.277)     (.075) (.0006) (.483) (.0055)  
 
 n = 9,275,  R2 = .202 
 
Now, holding income and age fixed, a 401(k)-eligible family is estimated to have $9,705 more in 
wealth than a non-eligible family.  This is just more than half of what is obtained by simply 
comparing averages. 
 
 (iv) Only the interaction e401k⋅(age − 41) is significant.  Its coefficient is .654 (t = 4.98).  It 
shows that the effect of 401(k) eligibility on financial wealth increases with age.  Another way to 
think about it is that age has a stronger positive effect on nettfa for those with 401(k) eligibility.  
The coefficient on e401k⋅(age − 41)2 is −.0038 (t statistic = −.33), so we could drop this term. 
 
 (v) The effect of e401k in part (iii) is the same for all ages, 9.705.  For the regression in part 
(iv), the coefficient on e401k from part (iv) is about 9.960, which is the effect at the average age, 
age = 41.  Including the interactions increases the estimated effect of e401k, but only by $255.  If 
we evaluate the effect in part (iv) at a wide range of ages, we would see more dramatic 
differences. 
 
 (vi) I chose fsize1 as the base group.  The estimated equation is  
 
 nettfa   = 16.34  +  9.455 e401k   −   .240 inc  +  .0100 inc2  −   1.495 age  +   .0290 age2 
  (10.12)  (1.278)     (.075) (.0006) (.483) (.0055)  
 
    −   .859 fsize2  −  4.665 fsize3  −  6.314 fsize4  −  7.361 fsize5 
  (1.818) (1.877) (1.868) (2.101) 
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 n = 9,275,  R2 = .204,  SSR = 30,215,207.5 
 
The F statistic for joint significance of the four family size dummies is about 5.44.  With 4 and 
9,265 df, this gives p-value = .0002.  So the family size dummies are jointly significant. 
 
 (vii) The SSR for the restricted model is from part (vi):  SSRr = 30,215,207.5.  The SSR for 
the unrestricted model is obtained by adding the SSRs for the five separate family size 
regressions.  I get SSRur = 29,985,400.  The Chow statistic is F = [(30,215,207.5 − 29,985,400)/ 
29,985,400]*(9245/20) ≈ 3.54.  With 20 and 9,245 df, the p-value is essentially zero.  In this 
case, there is strong evidence that the slopes change across family size.  Allowing for intercept 
changes alone is not sufficient.  (If you look at the individual regressions, you will see that the 
signs on the income variables actually change across family size.) 
 
C7.13 (i) 412/660 ≈ .624. 
 
 (ii) The OLS estimates of the LPM are  
 
 ecobuy  = .424   −  .803 ecoprc   +  .719 regprc  +  .00055 faminc  +   .024 hhsize  
  (.165)  (.109)     (.132) (.00053) (.013)   
 
   +   .025 educ   −  .00050 age  
  (.008) (.00125)  
 
 n = 660,  R2 = .110 
 
If ecoprc increases by, say, 10 cents (.10), then the probability of buying eco-labeled apples falls 
by about .080.  If regprc increases by 10 cents, the probability of buying eco-labeled apples 
increases by about .072.  (Of course, we are assuming that the probabilities are not close to the 
boundaries of zero and one, respectively.) 
 
 (iii) The F test, with 4 and 653 df, is 4.43, with p-value = .0015.  Thus, based on the usual F 
test, the four non-price variables are jointly very significant.  Of the four variables, educ appears 
to have the most important effect.  For example, a difference of four years of education implies 
an increase of .025(4) = .10 in the estimated probability of buying eco-labeled apples.  This 
suggests that more highly educated people are more open to buying produce that is 
environmentally friendly, which is perhaps expected.  Household size (hhsize) also has an effect.  
Comparing a couple with two children to one that has no children – other factors equal – the 
couple with two children has a .048 higher probability of buying eco-labeled apples. 
 
 (iv) The model with log(faminc) fits the data slightly better: the R-squared increases to about 
.112.  (We would not expect a large increase in R-squared from a simple change in the functional 
form.)  The coefficient on log(faminc) is about .045 (t = 1.55).  If log(faminc) increases by .10, 
which means roughly a 10% increase in faminc, then P(ecobuy = 1) is estimated to increase by 
about .0045, a pretty small effect. 
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 (v) The fitted probabilities range from about .185 to 1.051, so none are negative.  There are 
two fitted probabilities above 1, which is not a source of concern with 660 observations. 
 
 (vi) Using the standard prediction rule – predict one when .5iecobuy ≥  and zero otherwise – 
gives the fraction correctly predicted for ecobuy = 0 as 102/248 ≈ .411, so about 41.1%.  For 
ecobuy = 1, the fraction correctly predicted is 340/412 ≈ .825, or 82.5%.  With the usual 
prediction rule, the model does a much better job predicting the decision to buy eco-labeled 
apples.  (The overall percent correctly predicted is about 67%.) 
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CHAPTER 8 
SOLUTIONS TO PROBLEMS 
 
8.1 Parts (ii) and (iii).  The homoskedasticity assumption played no role in Chapter 5 in showing 
that OLS is consistent.  But we know that heteroskedasticity causes statistical inference based on 
the usual t and F statistics to be invalid, even in large samples.  As heteroskedasticity is a 
violation of the Gauss-Markov assumptions, OLS is no longer BLUE. 
 
8.3 False.  The unbiasedness of WLS and OLS hinges crucially on Assumption MLR.4, and, as 
we know from Chapter 4, this assumption is often violated when an important variable is 
omitted.  When MLR.4 does not hold, both WLS and OLS are biased.  Without specific 
information on how the omitted variable is correlated with the included explanatory variables, it 
is not possible to determine which estimator has a small bias.  It is possible that WLS would 
have more bias than OLS or less bias.  Because we cannot know, we should not claim to use 
WLS in order to solve “biases” associated with OLS. 
 
8.5 (i) No.  For each coefficient, the usual standard errors and the heteroskedasticity-robust ones 
are practically very similar. 
 
 (ii) The effect is −.029(4) = −.116, so the probability of smoking falls by about .116. 
 
 (iii) As usual, we compute the turning point in the quadratic:  .020/[2(.00026)]  38.46, so 
about 38 and one-half years. 

≈

 
 (iv) Holding other factors in the equation fixed, a person in a state with restaurant smoking 
restrictions has a .101 lower chance of smoking.  This is similar to the effect of having four more 
years of education. 
 
 (v) We just plug the values of the independent variables into the OLS regression line: 
 
  2ˆ .656 .069 log(67.44) .012 log(6,500) .029(16) .020(77) .00026(77 ) .0052.smokes = − ⋅ + ⋅ − + − ≈
 
Thus, the estimated probability of smoking for this person is close to zero.  (In fact, this person is 
not a smoker, so the equation predicts well for this particular observation.) 
 
8.7 (i) This follows from the simple fact that, for uncorrelated random variables, the variance of 
the sum is the sum of the variances: 2 2

, ,Var( ) Var( ) Var( )i i e i i e f vf v f v σ σ+ = + = + . 
 
 (ii) We compute the covariance between any two of the composite errors as 
 

, , , , , , , ,

2

Cov( , ) Cov( , ) Cov( , ) Cov( , ) Cov( , ) Cov( , )

                     Var( ) 0 0 0 ,
i e i g i i e i i g i i i i g i e i i e i g

i f

u u f v f v f f f v v f v v

f σ

= + + = + + +

= + + + =
 

where we use the fact that the covariance of a random variable with itself is its variance and the 
assumptions that ,, ,  and i i e i g,f v v  are pairwise uncorrelated. 
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 (iii) This is most easily solved by writing 
 

1 1 1
, ,1 1

( )i im m
i i e i i i e i ie e

m u m f u f m v− − −
= =

= + = +∑ ∑ ∑ ,1
.im

i ee=

i ev

 
 

Now, by assumption, fi is uncorrelated with each term in the last sum; therefore, fi is uncorrelated 
with .  It follows that  1

,1
im

i e
m−

=∑
( ) ( ) ( )1 1

, ,1 1

2 2

Var Var Var

                                   / ,

i im m
i i i e i i i ee e

f v i

f m v f m v

mσ σ

− −
= =

+ = +

= +

∑ ∑  

where we use the fact that the variance of an average of mi uncorrelated random variables with 
common variance ( 2

vσ  in this case) is simply the common variance divided by mi  – the usual 
formula for a sample average from a random sample. 
 
 (iv) The standard weighting ignores the variance of the firm effect, 2

fσ .  Thus, the 
(incorrect) weight function used is1/ ih mi= .  A valid weighting function is obtained by writing 
the variance from (iii) as 2 2 2 2Var( ) [1 (i fu σ σ= + / ) / ] .v f i f im hσ σ=

2
f

  But obtaining the proper 

weights requires us to know (or be able to estimate) the ratio 2 /vσ σ .  Estimation is possible, but 
we do not discuss that here.  In any event, the usual weight is incorrect.  When the mi are large or  
the ratio 2 /v

2
fσ σ  is small – so that the firm effect is more important than the individual-specific 

effect – the correct weights are close to being constant.  Thus, attaching large weights to large 
firms may be quite inappropriate. 
 
 
SOLUTIONS TO COMPUTER EXERCISES 
 
C8.1 (i) Given the equation 
 
  2

0 1 2 3 4 5 6 ,sleep totwrk educ age age yngkid male uβ β β β β β β= + + + + + + +
 
the assumption that the variance of u given all explanatory variables depends only on gender is 
 
 0 1( | , , , , ) ( | )Var u totwrk educ age yngkid male Var u male maleδ δ= = +  
 
Then the variance for women is simply 0δ  and that for men is 0δ + 1δ ; the difference in 
variances is δ1. 
 
 (ii) After estimating the above equation by OLS, we regress  on malei, i = 1,2, … ,706 
(including, of course, an intercept).  We can write the results as 

2ˆiu
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  = 189,359.2 – 28,849.6 male + residual 2û
   (20,546.4)  (27,296.5) 

 n  =  706,   R2  = .0016. 
 
Because the coefficient on male is negative, the estimated variance is higher for women. 
 
 (iii) No.  The t statistic on male is only about –1.06, which is not significant at even the 20% 
level against a two-sided alternative. 
 
C8.3 After estimating equation (8.18), we obtain the squared OLS residuals .  The full-blown 
White test is based on the R-squared from the auxiliary regression (with an intercept),  

2û

 
2û on llotsize, lsqrft, bdrms, llotsize2, lsqrft2, bdrms2,  
llotsize ⋅ lsqrft, llotsize ⋅bdrms, and lsqrft ⋅bdrms, 

 
 where “l ” in front of lotsize and sqrft denotes the natural log.  [See equation (8.19).]  With 88 
observations the n-R-squared version of the White statistic is 88(.109) ≈ 9.59, and this is the 
outcome of an (approximately) 2

9χ  random variable.  The p-value is about .385, which provides 
little evidence against the homoskedasticity assumption. 
 
C8.5 (i) By regressing sprdcvr on an intercept only we obtain μ̂ ≈ .515 se  .021).  The 
asymptotic t statistic for H0: µ = .5 is (.515 − .5)/.021

≈
≈ .71, which is not significant at the 10% 

level, or even the 20% level. 
 
 (ii) 35 games were played on a neutral court. 
 
 (iii) The estimated LPM is 
 
 nsprdcvr  = .490 + .035 favhome + .118 neutral − .023 fav25 + .018 und25 
   (.045)  (.050)  (.095)  (.050)  (.092) 

 n  =  553,   R2  =  .0034. 
 
The variable neutral has by far the largest effect – if the game is played on a neutral court, the 
probability that the spread is covered is estimated to be about .12 higher – and, except for the 
intercept, its t statistic is the only t statistic greater than one in absolute value (about 1.24). 
 
 (iv) Under H0: 1β  = 2β  = 3β = 4β = 0, the response probability does not depend on any 
explanatory variables, which means neither the mean nor the variance depends on the 
explanatory variables.  [See equation (8.38).] 
 
 (v) The F statistic for joint significance, with 4 and 548 df, is about .47 with p-value≈ .76.  
There is essentially no evidence against H0.   

 44



 
 (vi) Based on these variables, it is not possible to predict whether the spread will be covered.  
The explanatory power is very low, and the explanatory variables are jointly very insignificant.  
The coefficient on neutral may indicate something is going on with games played on a neutral 
court, but we would not want to bet money on it unless it could be confirmed with a separate, 
larger sample. 
 
C8.7 (i) The heteroskedasticity-robust standard error for ˆ

whiteβ ≈ .129 is about .026, which is 
notably higher than the nonrobust standard error (about .020).  The heteroskedasticity-robust 
95% confidence interval is about .078 to .179, while the nonrobust CI is, of course, narrower, 
about .090 to .168.  The robust CI still excludes the value zero by some margin. 
 
 (ii) There are no fitted values less than zero, but there are 231 greater than one.  Unless we 
do something to those fitted values, we cannot directly apply WLS, as  will be negative in 231 
cases. 

îh

 
C8.9 (i) I now get R2 = .0527, but the other estimates seem okay. 
 
 (ii) One way to ensure that the unweighted residuals are being provided is to compare them 
with the OLS residuals.  They will not be the same, of course, but they should not be wildly 
different. 
 
 (iii) The R-squared from the regression  is about .027.  We use this 
as 

2 2on ,  ,  1,...,807i i iu y y i =� � �

2
2
û

R  in equation (8.15) but with k = 2.  This gives F = 11.15, and so the p-value is essentially 
zero.   
 
 (iv) The substantial heteroskedasticity found in part (iii) shows that the feasible GLS 
procedure described on page 279 does not, in fact, eliminate the heteroskedasticity.  Therefore, 
the usual standard errors, t statistics, and F statistics reported with weighted least squares are not 
valid, even asymptotically. 
 
 (v) Weighted least squares estimation with robust standard errors gives  
 
   = 5.64  +  1.30 log(income)  −   2.94 log(cigpric)  −   .463 educ lcigs
   (37.31) (.54) (8.97) (.149) 
 
  +   .482 age  −   .0056 age2  −  3.46 restaurn 
   (.115) (.0012) (.72) 
 
 n = 807,  R2 = .1134 
 
The substantial differences in standard errors compared with equation (8.36) further indicate that 
our proposed correction for heteroskedasticity did not fully solve the heteroskedasticity problem.  
With the exception of restaurn, all standard errors got notably bigger; for example, the standard 
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error for log(cigpric)  doubled.  All variables that were statistically significant with the nonrobust 
standard errors remain significant, but the confidence intervals are much wider in several cases.   
 
C8.11 (i) The usual OLS standard errors are in (⋅), the heteroskedasticity-robust standard errors 
are in [⋅]: 
 
  = −17.20 + .628 inc   +   .0251 (age − 25) 2   + 2.54 male   nnettfa
   (2.82)  (.080)  (.0026) (2.04)  
   [3.23]  [.098]  [.0044] [2.06] 
 
   −   3.83 e401k    + .343 e401k⋅inc 
    (4.40) (.124) 
    [6.25] [.220] 
 
  n = 2,017, R2 = .131 
 
Although the usual OLS t statistic on the interaction term is about 2.8, the heteroskedasticity-
robust t statistic is just under 1.6. Therefore, using OLS, we must conclude the interaction term is 
only marginally significant. But the coefficient is nontrivial: it implies a much more sensitive 
relationship between financial wealth and income for those eligible for a 401(k) plan. 
 
 (ii) The WLS estimates, with usual WLS standard errors in (⋅) and the robust ones in [⋅], are 
 
  = −14.09 + .619 inc   +   .0175 (age − 25) 2   + 1.78 male   nnettfa
   (2.27)  (.084)  (.0019) (1.56)  
   [2.53]  [.091]  [.0026] [1.31] 
 
   −   2.17 e401k    + .295 e401k⋅inc 
    (3.66) (.130) 
    [3.51] [.160] 
 
  n = 2,017, R2 = .114 
 
The robust t statistic is about 1.84, and so the interaction term is marginally significant (two-
sided p-value is about .066).  
 
 (iii) The coefficient on e401k literally gives the estimated difference in financial wealth at inc 
= 0, which obviously is not interesting. It is not surprising that it is not statistically different from 
zero; we obviously cannot hope to estimate the difference at inc = 0, nor do we care to. 
 
 (iv) When we replace e401k⋅inc with e401k⋅(inc − 30), the coefficient on e401k becomes 
6.68 (robust t = 3.20). Now, this coefficient is the estimated difference in nettfa between those 
with and without 401(k) eligibility at roughly the average income, $30,000. Naturally, we can 
estimate this much more precisely, and its magnitude ($6,680) makes sense. 
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CHAPTER 9 
 

SOLUTIONS TO PROBLEMS 
 
9.1 There is functional form misspecification if 6β ≠ 0 or 7β ≠ 0, where these are the population 
parameters on ceoten2 and comten2, respectively.  Therefore, we test the joint significance of 
these variables using the R-squared form of the F test:  F = [(.375 − .353)/(1 − .375)][(177 – 
8)/2]  2.97.  With 2 and ∞ df, the 10% critical value is 2.30 awhile the 5% critical value is 3.00.  
Thus, the p-value is slightly above .05, which is reasonable evidence of functional form 
misspecification.  (Of course, whether this has a practical impact on the estimated partial effects 
for various levels of the explanatory variables is a different matter.) 

≈

 
9.3 (i) Eligibility for the federally funded school lunch program is very tightly linked to being 
economically disadvantaged. Therefore, the percentage of students eligible for the lunch program 
is very similar to the percentage of students living in poverty. 
 
 (ii) We can use our usual reasoning on omitting important variables from a regression 
equation.  The variables log(expend) and lnchprg are negatively correlated:  school districts with 
poorer children spend, on average, less on schools.   Further, 3β < 0.  From Table 3.2, omitting 
lnchprg (the proxy for poverty) from the regression produces an upward biased estimator of 1β  
[ignoring the presence of log(enroll) in the model].  So when we control for the poverty rate, the 
effect of spending falls. 
 
 (iii) Once we control for lnchprg, the coefficient on log(enroll) becomes negative and has a t 
of about –2.17, which is significant at the 5% level against a two-sided alternative.  The 
coefficient implies that  −(1.26/100)(%Δenroll) = −.0126(%Δenroll).  Therefore, a 
10% increase in enrollment leads to a drop in math10 of .126 percentage points. 

10mathΔ ≈

 
 (iv) Both math10 and lnchprg are percentages.  Therefore, a ten percentage point increase in 
lnchprg leads to about a 3.23 percentage point fall in math10, a sizeable effect. 
 
 (v) In column (1) we are explaining very little of the variation in pass rates on the MEAP 
math test:  less than 3%.  In column (2), we are explaining almost 19% (which still leaves much 
variation unexplained).  Clearly most of the variation in math10 is explained by variation in 
lnchprg.  This is a common finding in studies of school performance: family income (or related 
factors, such as living in poverty) are much more important in explaining student performance 
than are spending per student or other school characteristics. 
 
9.5 The sample selection in this case is arguably endogenous.  Because prospective students may 
look at campus crime as one factor in deciding where to attend college, colleges with high crime 
rates have an incentive not to report crime statistics. If this is the case, then the chance of 
appearing in the sample is negatively related to u in the crime equation.  (For a given school size, 
higher u means more crime, and therefore a smaller probability that the school reports its crime 
figures.) 
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9.7 (i) Following the hint, we compute Co  and , where v( , )w y Var( )w *

0 1y xβ β u= + + and 
. First, because 1( ... ) /mw z z m= + + *

hz x eh= + , it follows that *w x e= + , where e  is the 
average of the m measures (in the population). Now, by assumption, *x  is uncorrelated with each 
eh, and the eh are pairwise uncorrelated. Therefore, 
 

*
* 2Var( ) Var( ) Var( ) /ex

w x e σ σ= + = + 2 m , 
 

where we use 2Var( ) /ee σ= m . Next,  
 

* * * *
0 1 1 1Cov( , ) Cov( , ) Cov( , ) Var( )w y x e x u x x xβ β β β= + + + = = * , 

 
where we use the assumption that eh is uncorrelated with u for all h and *x  is uncorrelated with 
u. Combining the two pieces gives 
 

*

*

2

1 2 2

Cov( , )
Var( ) [ ( / )]

x

ex

w y
w m

σ
β

σ σ
⎧ ⎫⎪ ⎪= ⎨ ⎬+⎪ ⎪⎩ ⎭

, 

 
which is what we wanted to show. 
 
 (ii) Because 2 2

e/e mσ σ<  for all m > 1,  < *
2 2( /ex

mσ σ+ ) 2
*

2
ex

σ σ+  for all m > 1. Therefore 
 

* *

* *

2 2

2 2 21
[ ( / )]

x x

e ex x
m

σ σ
2σ σ σ

> >
+ +σ

, 

 
which means the term multiplying 1β  is closer to one when m is larger. We have shown that the 
bias in 1β  is smaller as m increases. As m grows, the bias disappears completely. Intuitively, this 
makes sense. The average of several mismeasured variables has less measurement error than a 
single mismeasured variable. As we average more and more such variables, the attenuation bias 
can become very small. 
 
 
SOLUTIONS TO COMPUTER EXERCISES 
 
C9.1 (i) To obtain the RESET F statistic, we estimate the model in Computer Exercise 7.5 and 
obtain the fitted values, say .  To use the version of RESET in (9.3), we add ( )2 

and ( )3 and obtain the F test for joint significance of these variables.  With 2 and 203 df, 
the F statistic is about 1.33 and p-value 

ilsalary ilsalary

ilsalary
≈ .27, which means that there is not much concern about 

functional form misspecification. 
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 (ii) Interestingly, the heteroskedasticity-robust F-type statistic is about 2.24 with p-value ≈ 
.11, so there is stronger evidence of some functional form misspecification with the robust test.  
But it is probably not strong enough to worry about. 
 
C9.3 (i) If the grants were awarded to firms based on firm or worker characteristics, grant 
could easily be correlated with such factors that affect productivity.  In the simple regression 
model, these are contained in u. 
 
 (ii) The simple regression estimates using the 1988 data are  
 
    log( )scrap  = .409 + .057 grant 
       (.241)  (.406) 

    n  =  54,   R2  =  .0004. 
 
The coefficient on grant is actually positive, but not statistically different from zero. 
 
 (iii) When we add log(scrap87) to the equation, we obtain 
 
    88log( )scrap  = .021 − .254 grant88 + .831 log(scrap87) 
       (.089)  (.147)  (.044) 

   n  =  54,   R2  =  .873, 
 
where the year subscripts are for clarity.  The t statistic for H0: grantβ = 0 is −.254/.147  -1.73.  
We use the 5% critical value for 40 df in Table G.2:  -1.68.  Because t = −1.73 < −1.68, we reject 
H0 in favor of H1: 

≈

grantβ < 0 at the 5% level.  
 
 (iv) The t statistic is (.831 – 1)/.044≈ −3.84, which is a strong rejection of H0. 
 
 (v) With the heteroskedasticity-robust standard error, the t statistic for grant88 is −.254/.142≈ 
−1.79, so the coefficient is even more significantly less than zero when we use the 
heteroskedasticity-robust standard error.  The t statistic for H0: 

87log( )scrap
β = 1 is (.831 – 1)/.071 ≈ 

−2.38, which is notably smaller than before, but it is still pretty significant. 
 
 
C9.5 With sales defined to be in billions of dollars, we obtain the following estimated equation 
using all companies in the sample: 
 
    rdintens  = 2.06 + .317 sales − .0074 sales2 + .053 profmarg 
     (0.63)  (.139)  (.0037)  (.044) 

    n  =  32,   R2  =  .191,   2R =  .104. 
 
When we drop the largest company (with sales of roughly $39.7 billion), we obtain 
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    rdintens  = 1.98 + .361 sales − .0103 sales2 + .055 profmarg 
     (0.72)  (.239)  (.0131)  (.046) 

    n  =  31,   R2  =  .191,   2R =  .101. 
 
When the largest company is left in the sample, the quadratic term is statistically significant, 
even though the coefficient on the quadratic is less in absolute value than when we drop the 
largest firm.  What is happening is that by leaving in the large sales figure, we greatly increase 
the variation in both sales and sales2; as we know, this reduces the variances of the OLS 
estimators (see Section 3.4).  The t statistic on sales2 in the first regression is about –2, which 
makes it almost significant at the 5% level against a two-sided alternative.  If we look at Figure 
9.1, it is not surprising that a quadratic is significant when the large firm is included in the 
regression:  rdintens is relatively small for this firm even though its sales are very large 
compared with the other firms.  Without the largest firm, a linear relationship between rdintens 
and sales seems to suffice. 
 
C9.7 (i) 205 observations out of the 1,989 records in the sample have obrate > 40.  (Data are 
missing for some variables, so not all of the 1,989 observations are used in the regressions.) 
 
 (ii) When observations with obrat > 40 are excluded from the regression in part (iii) of 
Problem 7.16, we are left with 1,768 observations.  The coefficient on white is about .129 (se ≈ 
.020).  To three decimal places, these are the same estimates we got when using the entire sample 
(see Computer Exercise C7.8).  Perhaps this is not very surprising since we only lost 203 out of 
1,971 observations.  However, regression results can be very sensitive when we drop over 10% 
of the observations, as we have here.   
 
 (iii) The estimates from part (ii) show that  does not seem very sensitive to the sample 
used, although we have tried only one way of reducing the sample. 

ˆ
whiteβ

 
C9.9 (i) The equation estimated by OLS is  
 
  ne  =  21.198  −  .270 inc  +  .0102 inc2  −   1.940 age  +   .0346 age2  ttfa
  ( 9.992) (.075) (.0006) (.483) (.0055) 
 
  +  3.369 male  +   9.713 e401k 
  (1.486) (1.277) 
 
 n = 9,275,  R2 = .202 
 
The coefficient on e401k means that, holding other things in the equation fixed, the average level 
of net financial assets is about $9,713 higher for a family eligible for a 401(k) than for a family 
not eligible. 
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 (ii) The OLS regression of on inci, , agei, , malei, and e401ki gives 2ˆiu 2
iinc 2

iage 2
2
û

R =  .0374, 
which translates into F = 59.97.  The associated p-value, with 6 and 9,268 df, is essentially zero.  
Consequently, there is strong evidence of heteroskedasticity, which means that u and the 
explanatory variables cannot be independent [even though E(u|x1,x2,…,xk) = 0 is possible]. 
 
 (iii) The equation estimated by LAD is  
 
  =   12.491  −  .262 inc  +  .00709 inc2  −   .723 age  +   .0111 age2  nettfa
  ( 1.382) (.010) (.00008) (.067) (.0008) 
 
  +  1.018 male  +   3.737 e401k 
  (.205) (.177) 
 
 n = 9,275,  Psuedo R2 = .109 
 
Now, the coefficient on e401k means that, at given income, age, and gender, the median 
difference in net financial assets between families with and without 401(k) eligibility is about 
$3,737. 
 
 (iv) The findings from parts (i) and (iii) are not in conflict.  We are finding that 401(k) 
eligibility has a larger effect on mean wealth than on median wealth.  Finding different mean and 
median effects for a variable such as nettfa, which has a highly skewed distribution, is not 
surprising.  Apparently, 401(k) eligibility has some large effects at the upper end of the wealth 
distribution, and these are reflected in the mean.  The median is much less sensitive to effects at 
the upper end of the distribution. 
 
C9.11 (i) The regression gives ˆ

execβ  = .085 with t = .30. The positive coefficient means that there 
is no deterrent effect, and the coefficient is not statistically different from zero. 
 
 (ii) Texas had 34 executions over the period, which is more than three times the next highest 
state (Virginia with 11). When a dummy variable is added for Texas, its t statistic is −.32, which 
is not unusually large. (The coefficient is large in magnitude, −8.31, but the studentized residual 
is not large.) We would not characterize Texas as an outlier. 
 
 (iii) When the lagged murder rate is added, ˆ

execβ  becomes −.071 with t = −2.34. The 
coefficient changes sign and becomes nontrivial: each execution is estimated to reduce the 
murder rate by .071 (murders per 100,000 people). 
 
 (iv) When a Texas dummy is added to the regression from part (iii), its t is only −.37 (and the 
coefficient is only −1.02). So, it is not an outlier here, either. Dropping TX from the regression 
reduces the magnitude of the coefficient to −.045 with t = −0.60. Texas accounts for much of the 
sample variation in exec, and dropping it gives a very imprecise estimate of the deterrent effect. 
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CHAPTER 10 
 

SOLUTIONS TO PROBLEMS 
 
10.1 (i) Disagree.  Most time series processes are correlated over time, and many of them 
strongly correlated.  This means they cannot be independent across observations, which simply 
represent different time periods.  Even series that do appear to be roughly uncorrelated – such as 
stock returns – do not appear to be independently distributed, as you will see in Chapter 12 under 
dynamic forms of heteroskedasticity. 
 
 (ii) Agree.  This follows immediately from Theorem 10.1.  In particular, we do not need the 
homoskedasticity and no serial correlation assumptions. 
 
 (iii) Disagree.  Trending variables are used all the time as dependent variables in a regression 
model.  We do need to be careful in interpreting the results because we may simply find a 
spurious association between yt and trending explanatory variables.  Including a trend in the 
regression is a good idea with trending dependent or independent variables.  As discussed in 
Section 10.5, the usual R-squared can be misleading when the dependent variable is trending. 
 
 (iv) Agree.  With annual data, each time period represents a year and is not associated with 
any season. 
 
10.3 Write 
 

y*  =  α0 + (δ0 + δ1 + δ2)z*  =  α0 + LRP ⋅ z*, 
 

and take the change:  Δy*  =  LRP ⋅ Δz*. 
 
10.5 The functional form was not specified, but a reasonable one is 
 

log(hsestrtst)  =  α0 + α1t + δ1Q2t + δ2Q3t + δ3Q3t + β1intt +β2log(pcinct) + ut, 
 

Where Q2t, Q3t, and Q4t are quarterly dummy variables (the omitted quarter is the first) and the 
other variables are self-explanatory.  This inclusion of the linear time trend allows the dependent 
variable and log(pcinct) to trend over time (intt probably does not contain a trend), and the 
quarterly dummies allow all variables to display seasonality.  The parameter β2 is an elasticity 
and 100 ⋅ β1 is a semi-elasticity. 
 
10.7 (i) pet-1 and pet-2 must be increasing by the same amount as pet. 
 
 (ii) The long-run effect, by definition, should be the change in gfr when pe increases 
permanently.  But a permanent increase means the level of pe increases and stays at the new 
level, and this is achieved by increasing pet-2, pet-1, and pet by the same amount. 
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SOLUTIONS TO COMPUTER EXERCISES 
 
C10.1 Let post79 be a dummy variable equal to one for years after 1979, and zero otherwise.  
Adding post79 to equation 10.15) gives 
 
  = 1.30 + .608 inft + .363 deft + 1.56 post79t 3ti
   (0.43)  (.076)  (.120)  (0.51) 

 n  =  56,   R2  =  .664,   2R  = .644. 
 
The coefficient on post79 is statistically significant (t statistic≈ 3.06) and economically large:  
accounting for inflation and deficits, i3 was about 1.56 points higher on average in years after 
1979.  The coefficient on def falls once post79 is included in the regression. 
 
C10.3 Adding log(prgnp) to equation (10.38) gives 
 
  log( )tprepop  = −6.66 − .212 log(mincovt) + .486 log(usgnpt) + .285 log(prgnpt) 
    (1.26)  (.040)  (.222)  (.080) 

   − .027 t 
    (.005) 

  n  =  38,   R2  =  .889,   2R  = .876. 
 
The coefficient on log(prgnpt) is very statistically significant (t statistic≈ 3.56).  Because the 
dependent and independent variable are in logs, the estimated elasticity of prepop with respect to 
prgnp is .285.  Including log(prgnp) actually increases the size of the minimum wage effect:  the 
estimated elasticity of prepop with respect to mincov is now −.212, as compared with −.169 in 
equation (10.38). 
 
C10.5 (i) The coefficient on the time trend in the regression of log(uclms) on a linear time trend 
and 11 monthly dummy variables is about −.0139 (se≈ .0012), which implies that monthly 
unemployment claims fell by about 1.4% per month on average.  The trend is very significant.  
There is also very strong seasonality in unemployment claims, with 6 of the 11 monthly dummy 
variables having absolute t statistics above 2.  The F statistic for joint significance of the 11 
monthly dummies yields p-value  .0009. ≈
 
 (ii) When ez is added to the regression, its coefficient is about −.508 (se  .146).  Because 
this estimate is so large in magnitude, we use equation (7.10):  unemployment claims are 
estimated to fall 100[1 – exp(−.508)] 

≈

≈ 39.8% after enterprise zone designation. 
 
 (iii) We must assume that around the time of EZ designation there were not other external 
factors that caused a shift down in the trend of log(uclms).  We have controlled for a time trend 
and seasonality, but this may not be enough. 
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C10.7 (i) The estimated equation is 
 
   = .0081 + .571 gyt tgc
    (.0019)  (.067) 

  n  =  36,   R2  =  .679. 
 
This equation implies that if income growth increases by one percentage point, consumption 
growth increases by .571 percentage points.  The coefficient on gyt is very statistically significant 
(t statistic≈ 8.5). 
 
 (ii) Adding gyt-1 to the equation gives 
 
  = .0064 + .552 gyt + .096 gyt-1 tgc
   (.0023)  (.070)  (.069) 

 n  =  35,   R2  =  .695. 
 
The t statistic on gyt-1 is only about 1.39, so it is not significant at the usual significance levels.  
(It is significant at the 20% level against a two-sided alternative.)  In addition, the coefficient is 
not especially large.  At best there is weak evidence of adjustment lags in consumption. 
 
 (iii) If we add r3t to the model estimated in part (i) we obtain 
 
  = .0082 + .578 gyt + .00021 r3t tgc
   (.0020)  (.072)  (.00063) 

 n  =  36,   R2  =  .680. 
 
The t statistic on r3t is very small.  The estimated coefficient is also practically small:  a one-
point increase in r3t reduces consumption growth by about .021 percentage points. 
 
C10.9 (i) The sign of 2β  is fairly clear-cut:  as interest rates rise, stock returns fall, so 2β < 0.  
Higher interest rates imply that T-bill and bond investments are more attractive, and also signal a 
future slowdown in economic activity.  The sign of 1β  is less clear.  While economic growth can 
be a good thing for the stock market, it can also signal inflation, which tends to depress stock 
prices. 
 
 (ii) The estimated equation is 
 
   5 trsp 00  = 18.84 + .036 pcipt − 1.36 i3t 
     (3.27)  (.129)  (0.54) 

   n  =  557,   R2  =  .012. 
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A one percentage point increase in industrial production growth is predicted to increase the stock 
market return by .036 percentage points (a very small effect).  On the other hand, a one 
percentage point increase in interest rates decreases the stock market return by an estimated 1.36 
percentage points. 
 
 (iii) Only i3 is statistically significant with t statistic≈ −2.52. 
 
 (iv) The regression in part (i) has nothing directly to say about predicting stock returns 
because the explanatory variables are dated contemporaneously with rsp500.  In other words, we 
do not know i3t before we know rsp500t.  What the regression in part (i) says is that a change in 
i3 is associated with a contemporaneous change in rsp500. 
 
C10.11 (i) The variable beltlaw becomes one at t = 61, which corresponds to January, 1986.  The 
variable spdlaw goes from zero to one at t = 77, which corresponds to May, 1987. 
 
 (ii) The OLS regression gives  
 
    = 10.469  +   .00275 t   −   .0427 feb  +  .0798 mar  +   .0185 apr  log( )totacc
   (.019) (.00016) (.0244) (.0244) (.0245) 
 
  +   .0321 may  +   .0202 jun  +  .0376 jul  +   .0540 aug 
   (.0245) (.0245) (.0245) (.0245) 
 
  +   .0424 sep  +   .0821 oct  +   .0713 nov  +   .0962 dec 
   (.0245) (.0245) (.0245) (.0245) 
    
 n = 108,  R2 = .797 
 
When multiplied by 100, the coefficient on t gives roughly the average monthly percentage 
growth in totacc, ignoring seasonal factors.  In other words, once seasonality is eliminated, 
totacc grew by about .275% per month over this period, or, 12(.275) = 3.3% at an annual rate.   
 
There is pretty clear evidence of seasonality.  Only February has a lower number of total 
accidents than the base month, January.  The peak is in December:  roughly, there are 9.6% 
accidents more in December over January in the average year.  The F statistic for joint 
significance of the monthly dummies is F = 5.15.  With 11 and 95 df, this give a p-value 
essentially equal to zero. 
 

(iii) I will report only the coefficients on the new variables: 
 

   =  10.640  +  … +    .00333 wkends   −   .0212 unem   log( )totacc
   (.063) (.00378) (.0034) 
 
  −   .0538 spdlaw  +   .0954 beltlaw 
   (.0126) (.0142) 
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 n = 108,  R2 = .910 
 
The negative coefficient on unem makes sense if we view unem as a measure of economic 
activity.  As economic activity increases – unem decreases – we expect more driving, and 
therefore more accidents.  The estimate that a one percentage point increase in the 
unemployment rate reduces total accidents by about 2.1%.  A better economy does have costs in 
terms of traffic accidents. 
 
 (iv) At least initially, the coefficients on spdlaw and beltlaw are not what we might 
expect.  The coefficient on spdlaw implies that accidents dropped by about 5.4% after the 
highway speed limit was increased from 55 to 65 miles per hour.  There are at least a couple of 
possible explanations.  One is that people because safer drivers after the increased speed limiting, 
recognizing that the must be more cautious.  It could also be that some other change – other than 
the increased speed limit or the relatively new seat belt law – caused lower total number of 
accidents, and we have not properly accounted for this change.   
 
The coefficient on beltlaw also seems counterintuitive at first.  But, perhaps people became less 
cautious once they were forced to wear seatbelts. 
 
 (v) The average of prcfat is about .886, which means, on average, slightly less than one 
percent of all accidents result in a fatality.  The highest value of prcfat is 1.217, which means 
there was one month where 1.2% of all accidents resulting in a fatality. 
 
 (vi) As in part (iii), I do not report the coefficients on the time trend and seasonal dummy 
variables:   
 
    = 1.030  +  … +    .00063 wkends   −   .0154 unem   prcfat
  (.103) (.00616) (.0055) 
 
  +   .0671 spdlaw   −   .0295 beltlaw 
   (.0206) (.0232) 
    
 n = 108,  R2 = .717 
 
Higher speed limits are estimated to increase the percent of fatal accidents, by .067 percentage 
points.  This is a statistically significant effect.  The new seat belt law is estimated to decrease 
the percent of fatal accidents by about .03, but the two-sided p-value is about .21.   
 
Interestingly, increased economic activity also increases the percent of fatal accidents.  This may 
be because more commercial trucks are on the roads, and these probably increase the chance that 
an accident results in a fatality. 
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C10.13 (i) The estimated equation is 
 
 232gwage    = .0022     +   .151 gmwage    +   .244 gcpi   
 (.0004) (.001) (.082) 
 
 n = 611, R2 = .293 
 
The coefficient on gmwage implies that a one percentage point growth in the minimum wage is 
estimated to increase the growth in wage232 by about .151 percentage points. 
 
 (ii) When 12 lags of gmwage are added, the sum of all coefficients is about .198, which is 
somewhat higher than the .151 obtained from the static regression. Plus, the F statistic for lags 1 
through 12 given p-value = .058, which shows they are jointly, marginally statistically 
significant. (Lags 8 through 12 have fairly large coefficients, and some individual t statistics are 
significant at the 5% level.) 
 
 (iii) The estimated equation is 
 
 232gemp    = −.0004     −   .0019 gmwage    −   .0055 gcpi   
 (.0010) (.0228) (.1938) 
 
 n = 611, R2 = .000 
 
The coefficient on gmwage is puny with a very small t statistic. In fact, the R-squared is 
practically zero, which means neither gmwage nor gcpi has any effect on employment growth in 
sector 232. 
 
 (iv) Adding lags of gmwage does not change the basic story. The F test of joint significance 
of gmwage and lags 1 through 12 of gmwage gives p-value = .439. The coefficients change sign 
and none is individually statistically significant at the 5% level. Therefore, there is little evidence 
that minimum wage growth affects employment growth in sector 232, either in the short run or 
the long run. 
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CHAPTER 11 
 

SOLUTIONS TO PROBLEMS 
 
11.1 Because of covariance stationarity, 0γ  = Var(xt) does not depend on t, so sd(xt+h) = 0γ  for 

any h ≥ 0.  By definition, Corr(xt,xt+h) = Cov(xt,xt+h)/[sd(xt) ⋅ sd(xt+h)] = 0 0/( ) / .h h 0γ γ γ γ γ⋅ =  
 
11.3 (i) E(yt) = E(z + et) = E(z) + E(et) = 0.  Var(yt) = Var(z + et) = Var(z) + Var(et) + 
2Cov(z,et) = 2

zσ  + 2
eσ  + 2 0 = ⋅ 2

zσ  + 2
eσ .  Neither of these depends on t. 

 
 (ii) We assume h > 0; when h = 0 we obtain Var(yt).  Then Cov(yt,yt+h) = E(ytyt+h) = E[(z + 
et)(z + et+h)] = E(z2) + E(zet+h) + E(etz) + E(etet+h) = E(z2) = 2

zσ  because {et} is an uncorrelated 
sequence (it is an independent sequence and z is uncorrelated with et for all t.  From part (i) we 
know that E(yt) and Var(yt) do not depend on t and we have shown that Cov(yt,yt+h) depends on 
neither t nor h.  Therefore, {yt} is covariance stationary. 
 
 (iii) From Problem 11.1 and parts (i) and (ii), Corr(yt,yt+h) = Cov(yt,yt+h)/Var(yt) = 2

zσ /( 2
zσ  + 

2
eσ ) > 0. 

 
 (iv) No.  The correlation between yt and yt+h is the same positive value obtained in part (iii) 
now matter how large is h.  In other words, no matter how far apart yt and yt+h are, their 
correlation is always the same.  Of course, the persistent correlation across time is due to the 
presence of the time-constant variable, z. 
 
11.5 (i) The following graph gives the estimated lag distribution: 
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lag

0 1 2 3 4 5 6 7 8 9 10 11 12

coefficient

0

.04

.08

.12

.16

 
By some margin, the largest effect is at the ninth lag, which says that a temporary increase in 
wage inflation has its largest effect on price inflation nine months later.  The smallest effect is at 
the twelfth lag, which hopefully indicates (but does not guarantee) that we have accounted for 
enough lags of gwage in the FLD model. 
 
 (ii) Lags two, three, and twelve have t statistics less than two.  The other lags are statistically 
significant at the 5% level against a two-sided alternative.  (Assuming either that the CLM 
assumptions hold for exact tests or Assumptions TS.1′ through TS.5′ hold for asymptotic tests.) 
 
 (iii) The estimated LRP is just the sum of the lag coefficients from zero through twelve:  
1.172.  While this is greater than one, it is not much greater, and the difference from unity could 
be due to sampling error. 
 
 (iv) The model underlying and the estimated equation can be written with intercept α0 and 
lag coefficients δ0, δ1, … , δ12.  Denote the LRP by θ0 = δ0 + δ1 + …  + δ12.  Now, we can write 
δ0 = θ0 − δ1 − δ2 − …  − δ12.  If we plug this into the FDL model we obtain (with yt = gpricet and 
zt = gwaget) 
 
 yt = α0 + (θ0 − δ1 − δ2 − …  − δ12)zt + δ1zt-1 + δ2zt-2 + …  + δ12zt-12 + ut 

  = α0 + θ0zt + δ1(zt-1 – zt) + δ2(zt-2 – zt) + …  + δ12(zt-12 – zt) + ut. 
 
 
Therefore, we regress yt on zt, (zt-1 – zt), (zt-2 – zt), … , (zt-12 – zt) and obtain the coefficient and 
standard error on zt as the estimated LRP and its standard error. 
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 (v) We would add lags 13 through 18 of gwaget to the equation, which leaves 273 – 6 = 267 
observations.  Now, we are estimating 20 parameters, so the df in the unrestricted model is dfur = 
267.  Let 2

urR  be the R-squared from this regression.  To obtain the restricted R-squared, 2
rR , we 

need to reestimate the model reported in the problem but with the same 267 observations used to 
estimate the unrestricted model.  Then F = [( 2

urR − 2
rR )/(1 − 2

urR )](247/6).  We would find the 
critical value from the F6,247 distribution. 
 
11.7 (i) We plug the first equation into the second to get 
 
 yt – yt-1 = λ( 0γ  + 1γ xt + et – yt-1) + at, 

 
and, rearranging, 
 
 yt = λ 0γ

 + (1 − λ)yt-1 + λ 1γ xt + at + λet, 

  ≡ β0 + β1yt-1 + β2 xt + ut, 
 
where β0 ≡ λ 0γ , β1 ≡ (1 − λ), β2 ≡ λ 1γ , and ut ≡ at + λet. 
 
 (ii) An OLS regression of yt on yt-1 and xt produces consistent, asymptotically normal 
estimators of the βj.  Under E(et|xt,yt-1,xt-1, … ) = E(at|xt,yt-1,xt-1, … ) = 0 it follows that 
E(ut|xt,yt-1,xt-1, … ) = 0, which means that the model is dynamically complete [see equation 
(11.37)].  Therefore, the errors are serially uncorrelated.  If the homoskedasticity assumption 
Var(ut|xt,yt-1) = σ2 holds, then the usual standard errors, t statistics and F statistics are 
asymptotically valid. 
 
 (iii) Because β1 = (1 − λ), if 1β̂ = .7 then λ̂ = .3.  Further, 2β̂ = 1

ˆ ˆλγ , or 1̂γ = 2β̂ / λ̂ = .2/.3 ≈ 
.67. 
 
SOLUTIONS TO COMPUTER EXERCISES 
 
C11.1 (i) The first order autocorrelation for log(invpc) is about .639.  If we first detrend 
log(invpc) by regressing on a linear time trend, 1ρ̂  ≈ .485.  Especially after detrending there is 
little evidence of a unit root in log(invpc).  For log(price), the first order autocorrelation is about 
.949, which is very high.  After detrending, the first order autocorrelation drops to .822, but this 
is still pretty large.  We cannot confidently rule out a unit root in log(price). 
 
 (ii) The estimated equation is 
 
   = −.853 + 3.88 ∆log(pricet) + .0080 t nlog( )tinvpc
    (.040)  (0.96)   (.0016) 

  n  =  41,   R2  =  .501. 
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The coefficient on Δlog(pricet) implies that a one percentage point increase in the growth in price 
leads to a 3.88 percent increase in housing investment above its trend.  [If Δlog(pricet) = .01 then 
Δ  = .0388; we multiply both by 100 to convert the proportionate changes to 
percentage changes.] 

nlog( )tinvpc

 
 (iii) If we first linearly detrend log(invpct) before regressing it on Δlog(pricet) and the time 
trend, then R2 = .303, which is substantially lower than that when we do not detrend.  Thus,  
∆log(pricet) explains only about 30% of the variation in log(invpct) about its trend. 
 
 (iv) The estimated equation is 
 
  Δ   = .006 + 1.57 Δlog(pricet) + .00004t nlog( )tinvpc
    (.048)  (1.14)   (.00190) 

  n  =  41,   R2  =  .048. 
 
The coefficient on Δlog(pricet) has fallen substantially and is no longer significant at the 5% 
level against a positive one-sided alternative.  The R-squared is much smaller; Δlog(pricet) 
explains very little variation in Δlog(invpct).  Because differencing eliminates linear time trends, 
it is not surprising that the estimate on the trend is very small and very statistically insignificant. 
 
C11.3 (i) The estimated equation is 
 
  = .226 + .049 n

treturn 1treturn −  − .0097  2
1treturn −

   (.087)  (.039)   (.0070) 

   n  =  689,   R2  =  .0063. 
 
 (ii) The null hypothesis is H0: β1 = β2 = 0.  Only if both parameters are zero does 
E(returnt|returnt-1) not depend on returnt-1.  The F statistic is about 2.16 with p-value  .116.  
Therefore, we cannot reject H0 at the 10% level. 

≈

 
 (iii) When we put returnt-1 ⋅ returnt-2 in place of 2

1treturn −  the null can still be stated as in part 
(ii):  no past values of return, or any functions of them, should help us predict returnt.  The R-
squared is about .0052 and F  1.80 with p-value≈ ≈ .166.  Here, we do not reject H0 at even the 
15% level. 
 
 (iv) Predicting returnt based on past returns does not appear promising.  Even though the F 
statistic from part (ii) is almost significant at the 10% level, we have many observations.  We 
cannot even explain 1% of the variation in returnt. 
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C11.5 (i) The estimated equation is 
 
 mgfrΔ  = −1.27 − .035 Δpe − .013 Δpe-1 − .111 Δpe-2 + .0079 t 
   (1.05)  (.027)  (.028)  (.027)  (.0242) 

 n  =  69,   R2  =  .234,   2R  = .186. 
 
The time trend coefficient is very insignificant, so it is not needed in the equation. 
 
 (iii) The estimated equation is 
 
 mgfrΔ  = −.650 − .075 Δpe − .051 Δpe-1 + .088 Δpe-2 + 4.84 ww2 - 1.68 pill 
   (.582)  (.032)  (.033)  (.028)  (2.83)  (1.00) 

 n  =  69,   R2  =  .296,   2R  = .240. 
 
The F statistic for joint significance is F = 2.82 with p-value≈ .067.  So ww2 and pill are not 
jointly significant at the 5% level, but they are at the 10% level. 
 
 (iii) By regressing Δgfr on Δpe, (Δpe-1 − Δpe).  (Δpe-2 − Δpe), ww2, and pill, we obtain the 
LRP and its standard error as the coefficient on Δpe:  −.075, se = .032.  So the estimated LRP is 
now negative and significant, which is very different from the equation in levels, (10.19) (the 
estimated LRP was .101 with a t statistic of about 3.37).  This is a good example of how 
differencing variables before including them in a regression can lead to very different 
conclusions than a regression in levels. 
 
C11.7 (i) If E(gct|It-1) = E(gct) – that is, E(gct|It-1) = does not depend on gct-1, then β1 = 0 in gct = 
β0 + β1gct-1 + ut.  So the null hypothesis is H0: β1 = 0 and the alternative is H1: β1 ≠ 0.  Estimating 
the simple regression using the data in CONSUMP.RAW gives 
 
  = .011 + .446 gct-1 m

tgc
   (.004)  (.156) 

 n  =  35,   R2  =  .199.    
 
The t statistic for 1̂β  is about 2.86, and so we strongly reject the PIH.  The coefficient on gct-1 is 
also practically large, showing significant autocorrelation in consumption growth. 
 
 (ii) When gyt-1 and i3t-1 are added to the regression, the R-squared becomes about .288.  The 
F statistic for joint significance of gyt-1 and i3t-1, obtained using the Stata “test” command, is 
1.95, with p-value  .16.  Therefore, gyt-1 and i3t-1 are not jointly significant at even the 15% 
level. 

≈
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C11.9 (i) The first order autocorrelation for prcfat is .709, which is high but not necessarily a 
cause for concern.  For unem, 1ˆ .950ρ = , which is cause for concern in using unem as an 
explanatory variable in a regression. 
 
 (ii) If we use the first differences of prcfat and unem, but leave all other variables in their 
original form, we get the following: 
 
 nprcfatΔ =  −.127  +  … +    .0068 wkends   +   .0125 unemΔ    
  (.105) (.0072) (.0161) 
 
  −   .0072 spdlaw   +   .0008 bltlaw 
   (.0238) (.0265) 
    
 n = 107,  R2 = .344, 
 
where I have again suppressed the coefficients on the time trend and seasonal dummies.  This 
regression basically shows that the change in prcfat cannot be explained by the change in unem 
or any of the policy variables.  It does have some seasonality, which is why the R-squared is 
.344. 
 
 (iii) This is an example about how estimation in first differences loses the interesting 
implications of the model estimated in levels.  Of course, this is not to say the levels regression is 
valid.  But, as it turns out, we can reject a unit root in prcfat, and so we can at least justify using 
it in level form; see Computer Exercise 18.13.  Generally, the issue of whether to take first 
differences is very difficult, even for professional time series econometricians. 
 
C11.11 (i) The estimated equation is 
 
  n

tpcrgdp =   3.344   −   1.891 tunemΔ  
   (0.163) (0.182) 
 
   n = 46,  R2 = .710 
 
Naturally, we do not get the exact estimates specified by the theory. Okun’s Law is expected to 
hold, at best, on average. The estimates are not particularly far from their hypothesized values of 
3 (intercept) and −2 (slope). 
 
 (ii) The t statistic for testing 0 1H : 2β = −  is about .60, which gives a two-sided p-value of 
about .55. This is very little evidence against H0; the null is not rejected at any reasonable 
significance level. 
 
 (iii) The t statistic for 0 0H : 3β =  is about 2.11, and the two-sided p-value is about .04. 
Therefore, the null is rejected at the 5% level, although it is not much stronger than that. 
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 (iv) The joint test underlying Okun’s Law gives F = 2.41. With (2,44) df, we get, roughly, p-
value = .10. Therefore, Okun’s Law passes at the 5% level, but only just at the 10% level. 
 



CHAPTER 12 
 

SOLUTIONS TO PROBLEMS 
 
12.1 We can reason this from equation (12.4) because the usual OLS standard error is an 
estimate of / xSSTσ .  When the dependent and independent variables are in level (or log) form, 
the AR(1) parameter, ρ, tends to be positive in time series regression models.  Further, the 
independent variables tend to be positive correlated, so (xt − x )(xt+j − x ) – which is what 
generally appears in (12.4) when the {xt} do not have zero sample average – tends to be positive 
for most t and j.  With multiple explanatory variables the formulas are more complicated but 
have similar features. 
 If ρ < 0, or if the {xt} is negatively autocorrelated, the second term in the last line of (12.4) 
could be negative, in which case the true standard deviation of 1̂β  is actually less than 

/ xSSTσ . 
 
12.3 (i) Because U.S. presidential elections occur only every four years, it seems reasonable to 
think the unobserved shocks – that is, elements in ut – in one election have pretty much 
dissipated four years later.  This would imply that {ut} is roughly serially uncorrelated. 
 
 (ii) The t statistic for H0: ρ = 0 is −.068/.240 ≈ −.28, which is very small.  Further, the 
estimate ρ̂  = −.068 is small in a practical sense, too.  There is no reason to worry about serial 
correlation in this example. 
 
 (iii) Because the test based on ˆtρ  is only justified asymptotically, we would generally be 
concerned about using the usual critical values with n = 20 in the original regression.  But any 
kind of adjustment, either to obtain valid standard errors for OLS as in Section 12.5 or a feasible 
GLS procedure as in Section 12.3, relies on large sample sizes, too.  (Remember, FGLS is not 
even unbiased, whereas OLS is under TS.1 through TS.3.)  Most importantly, the estimate of ρ is 
practically small, too.  With ρ̂  so close to zero, FGLS or adjusting the standard errors would 
yield similar results to OLS with the usual standard errors. 
 
12.5 (i) There is substantial serial correlation in the errors of the equation, and the OLS standard 
errors almost certainly underestimate the true standard deviation in ˆ

EZβ .  This makes the usual 
confidence interval for βEZ and t statistics invalid. 
 
 (ii) We can use the method in Section 12.5 to obtain an approximately valid standard error.  
[See equation (12.43).]  While we might use g = 2 in equation (12.42), with monthly data we 
might want to try a somewhat longer lag, maybe even up to g = 12. 
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SOLUTIONS TO COMPUTER EXERCISES 
 
C12.1 Regressing  on , using the 69 available observations, givesˆtu 1ˆtu − ρ̂ ≈ .292 and se( ρ̂ ) ≈ 
.118.  The t statistic is about 2.47, and so there is significant evidence of positive AR(1) serial 
correlation in the errors (even though the variables have been differenced).  This means we 
should view the standard errors reported in equation (11.27) with some suspicion. 
 
C12.3 (i) The test for AR(1) serial correlation gives (with 35 observations) ρ̂ ≈ –.110, se( ρ̂ )≈ 
.175.  The t statistic is well below one in absolute value, so there is no evidence of serial 
correlation in the accelerator model.  If we view the test of serial correlation as a test of dynamic 
misspecification, it reveals no dynamic misspecification in the accelerator model. 
 
 (ii) It is worth emphasizing that, if there is little evidence of AR(1) serial correlation, there is 
no need to use feasible GLS (Cochrane-Orcutt or Prais-Winsten). 
 
C12.5 (i) Using the data only through 1992 gives 
 
 demwins  = .441 − .473 partyWH + .479 incum + .059 partyWH ⋅gnews 
   (.107) (.354)  (.205)  (.036) 

      − .024 partyWH ⋅ inf 
    (.028) 

 n  =  20,   R2  =  .437,   2R  = .287. 
 
The largest t statistic is on incum, which is estimated to have a large effect on the probability of 
winning.  But we must be careful here.  incum is equal to 1 if a Democratic incumbent is running 
and –1 if a Republican incumbent is running.  Similarly, partyWH is equal to 1 if a Democrat is 
currently in the White House and –1 if a Republican is currently in the White House.  So, for an 
incumbent Democrat running, we must add the coefficients on partyWH and incum together, and 
this nets out to about zero. 
 The economic variables are less statistically significant than in equation (10.23).  The gnews 
interaction has a t statistic of about 1.64, which is significant at the 10% level against a one-sided 
alternative.  (Since the dependent variable is binary, this is a case where we must appeal to 
asymptotics.  Unfortunately, we have only 20 observations.)  The inflation variable has the 
expected sign but is not statistically significant. 
 
 (ii) There are two fitted values less than zero, and two fitted values greater than one. 
 
 (iii) Out of the 10 elections with demwins = 1, 8 of these are correctly predicted.  Out of the 
10 elections with demwins = 0, 7 are correctly predicted.  So 15 out of 20 elections through 1992 
are correctly predicted.  (But, remember, we used data from these years to obtain the estimated 
equation.) 
 
 (iv) The explanatory variables are partyWH = 1, incum = 1, gnews = 3, and inf = 3.019.  
Therefore, for 1996, 
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 demwins    =   .441  −  .473  +  .479  +  .059(3)  −  .024(3.019)  .552. ≈
 
Because this is above .5, we would have predicted that Clinton would win the 1996 election, as 
he did. 
 
 (v) The regression of  on  produces ˆtu 1ˆtu − ρ̂  ≈ -.164 with heteroskedasticity-robust standard 
error of about .195.  (Because the LPM contains heteroskedasticity, testing for AR(1) serial 
correlation in an LPM generally requires a heteroskedasticity-robust test.)  Therefore, there is 
little evidence of serial correlation in the errors.  (And, if anything, it is negative.) 
 
 (vi) The heteroskedasticity-robust standard errors are given in [ ⋅ ] below the usual standard 
errors: 
 
 demwins   = .441   − .473 partyWH   + .479 incum  + .059 partyWH gnews ⋅
  (.107) (.354) (.205) (.036) 
  [.086] [.301] [.185] [.030] 

      – .024 partyWH ⋅ inf 
    (.028) 
    [.019] 

 n  =  20,   R2  =  .437,   2R  = .287. 
 
In fact, all heteroskedasticity-robust standard errors are less than the usual OLS standard errors, 
making each variable more significant.  For example, the t statistic on partyWH gnews becomes 
about 1.97, which is notably above 1.64.  But we must remember that the standard errors in the 
LPM have only asymptotic justification.   With only 20 observations it is not clear we should 
prefer the heteroskedasticity-robust standard errors to the usual ones. 

⋅

 
C12.7 (i) The iterated Prais-Winsten estimates are given below.  The estimate of ρ is, to three 
decimal places, .293, which is the same as the estimate used in the final iteration of Cochrane-
Orcutt: 
 
    =  −37.08  +   2.94 log(chempi)  +   1.05 log(gas)  +   1.13 log(rtwex) log( )chnimp
  (22.78) (.63) (.98) (.51) 
 

− .016 befile6  −  .033 affile6  −  .577 afdec6 
 (.319) (.322) (.342) 

 
 n = 131,  R2 = .202 
 
 (ii) Not surprisingly, the C-O and P-W estimates are quite similar.  To three decimal places, 
they use the same value of ρ̂  (to four decimal places it is .2934 for C-O and .2932 for P-W).  
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The only practical difference is that P-W uses the equation for t = 1.  With n = 131, we hope this 
makes little difference. 
 
C12.9 (i) Here are the OLS regression results: 
 
    = −.073  −  .0040 t  −   .0101 mon  −   .0088 tues  +   .0376 wed  +  .0906 thurs log( )avgprc
  (.115) (.0014) (.1294) (.1273) (.1257) (.1257) 
 
  n = 97,  R2 = .086 
 
The test for joint significance of the day-of-the-week dummies is F = .23, which gives p-value = 
.92.  So there is no evidence that the average price of fish varies systematically within a week. 
 
 (ii) The equation is  
 
    =   −.920  −  .0012 t  −   .0182 mon  −   .0085 tues  +   .0500 wed  +  .1225 thurs log( )avgprc
  (.190) (.0014) (.1141) (.1121) (.1117) (.1110) 
 
  +  .0909 wave2  +   .0474 wave3 
  (.0218) (.0208) 
 
  n = 97,  R2 = .310 
 
Each of the wave variables is statistically significant, with wave2 being the most important.  
Rough seas (as measured by high waves) would reduce the supply of fish (shift the supply curve 
back), and this would result in a price increase.  One might argue that bad weather reduces the 
demand for fish at a market, too, but that would reduce price.  If there are demand effects 
captured by the wave variables, they are being swamped by the supply effects. 
 
 (iii) The time trend coefficient becomes much smaller and statistically insignificant.  We can 
use the omitted variable bias table from Chapter 3, Table 3.2 to determine what is probably going 
on.  Without wave2 and wave3, the coefficient on t seems to have a downward bias.  Since we 
know the coefficients on wave2 and wave3 are positive, this means the wave variables are 
negatively correlated with t.  In other words, the seas were rougher, on average, at the beginning 
of the sample period.  (You can confirm this by regressing wave2 on t and wave3 on t.) 
 
 (iv) The time trend and daily dummies are clearly strictly exogenous, as they are just 
functions of time and the calendar.  Further, the height of the waves is not influenced by past 
unexpected changes in log(avgprc). 
 
 (v) We simply regress the OLS residuals on one lag, getting ˆˆ ˆ.618,se( ) .081, 7.63.tρρ ρ= = =   
Therefore, there is strong evidence of positive serial correlation. 
 
 (vi) The Newey-West standard errors are  Given the 
significant amount of AR(1) serial correlation in part (v), it is somewhat surprising that these 

2 3
ˆ ˆse( ) .0234 and se( ) .0195.wave waveβ β= =
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standard errors are not much larger compared with the usual, incorrect standard errors.  In fact, 
the Newey-West standard error for is actually smaller than the OLS standard error. 3

ˆ
waveβ

 
 (vii) The Prais-Winsten estimates are  
 
    =   −.658  −  .0007 t  +   .0099 mon  +   .0025 tues  +   .0624 wed  +  .1174 thurs log( )avgprc
  (.239) (.0029) (.0652) (.0744) (.0746) (.0621) 
 
  +  .0497 wave2  +   .0323 wave3 
  (.0174) (.0174) 
 
  n = 97,  R2 = .135 
 
The coefficient on wave2 drops by a nontrivial amount, but it still has a t statistic of almost 3.  
The coefficient on wave3 drops by a relatively smaller amount, but its t statistic (1.86) is 
borderline significant.  The final estimate of ρ is about .687. 
 
C12.11 (i) The average of  over the sample is 4.44, with the smallest value being .0000074 
and the largest being 232.89.   

2ˆiu

 
 (ii) This is the same as C12.4, part (ii): 
 
  = 3.26 − .789 returnt-1 + .297 2ˆiu 2

1treturn −  + residualt 
   (0.44)  (.196)  (.036) 

 n  =  689,  R2  =  .130. 
 
 (iii) The graph of the estimated variance function is 
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The variance is smallest when return-1 is about 1.33, and the variance is then about 2.74. 
 
 (iv) No. The graph in part (iii) makes this clear, as does finding that the smallest variance 
estimate is 2.74. 
 
 (v) The R-squared for the ARCH(1) model is .114, compared with .130 for the quadratic in 
return-1.  We should really compare adjusted R-squareds, because the ARCH(1) model contains 
only two total parameters.  For the ARCH(1) model, 2R  is about .112; for the model in part (ii), 

2R  = .128.  Therefore, after adjusting for the different df, the quadratic in return-1 fits better than 
the ARCH(1) model. 
 
 (vi) The coefficient on  is only .042, and its t statistic is barely above one (t = 1.09).  
Therefore, an ARCH(2) model does not seem warranted.  The adjusted R-squared is about .113, 
so the ARCH(2) fits worse than the model estimated in part (ii). 

2
2ˆtu −

 
C12.13 (i) The regression  on , ˆtu 1ˆtu − tunemΔ  gives a coefficient on 1ˆtu −  of .073 with t = .42. 
Therefore, there is very little evidence of first-order serial correlation.  
 
 (ii) The simple regression  on 2ˆ tu tunemΔ  gives a slope coefficient of about .452 with t = 
2.07, and so, at the 5% significance level, we find that there is heteroskedasticity. The variance 
of the error appears to be larger when the change in unemployment is larger. 
 
 (iii) The heteroskedasticity-robust standard error is about .223, compared with the usual OLS 
standard error of .182. So, the robust standard error is more than 20% larger than the usual OLS 
one. Of course, a larger standard error leads to a wider confidence interval for 1β . 
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CHAPTER 13 
 

SOLUTIONS TO PROBLEMS 
 
13.1 Without changes in the averages of any explanatory variables, the average fertility rate fell 
by .545 between 1972 and 1984; this is simply the coefficient on y84.  To account for the 
increase in average education levels, we obtain an additional effect:  –.128(13.3 – 12.2) ≈ –.141.  
So the drop in average fertility if the average education level increased by 1.1 is .545 + .141 = 
.686, or roughly two-thirds of a child per woman. 
 
13.3 We do not have repeated observations on the same cross-sectional units in each time period, 
and so it makes no sense to look for pairs to difference.  For example, in Example 13.1, it is very 
unlikely that the same woman appears in more than one year, as new random samples are 
obtained in each year.  In Example 13.3, some houses may appear in the sample for both 1978 
and 1981, but the overlap is usually too small to do a true panel data analysis. 
 
13.5 No, we cannot include age as an explanatory variable in the original model.  Each person in 
the panel data set is exactly two years older on January 31, 1992 than on January 31, 1990.  This 
means that ∆agei = 2 for all i.  But the equation we would estimate is of the form 
 

Δsavingi  =  δ0 + β1Δagei + …, 
 

where δ0 is the coefficient the year dummy for 1992 in the original model.  As we know, when 
we have an intercept in the model we cannot include an explanatory variable that is constant 
across i; this violates Assumption MLR.3.  Intuitively, since age changes by the same amount for 
everyone, we cannot distinguish the effect of age from the aggregate time effect. 
 
13.7  (i) It is not surprising that the coefficient on the interaction term changes little when 
afchnge is dropped from the equation because the coefficient on afchnge in (3.12) is only .0077 
(and its t statistic is very small).  The increase from .191 to .198 is easily explained by sampling 
error. 
 
 (ii) If highearn is dropped from the equation [so that 1 0β =  in (3.10)], then we are assuming 
that, prior to the change in policy, there is no difference in average duration between high earners 
and low earners.  But the very large (.256), highly statistically significant estimate on highearn in 
(3.12) shows this presumption to be false.  Prior to the policy change, the high earning group 
spent about 29.2% [ exp(  ] longer on unemployment compensation than the low 
earning group. By dropping highearn from the regression, we attribute to the policy change the 
difference between the two groups that would be observed without any intervention. 

.256) 1 .292− ≈
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SOLUTIONS TO COMPUTER EXERCISES 
 
C13.1 (i) The F statistic (with 4 and 1,111 df) is about 1.16 and p-value ≈ .328, which shows 
that the living environment variables are jointly insignificant. 
 
 (ii) The F statistic (with 3 and 1,111 df) is about 3.01 and p-value ≈ .029, and so the region 
dummy variables are jointly significant at the 5% level. 
 
 (iii) After obtaining the OLS residuals, , from estimating the model in Table 13.1, we run 
the regression  on y74, y76, …,  y84 using all 1,129 observations.  The null hypothesis of 
homoskedasticity is H0: γ1 = 0, γ2 = 0, … , γ6 = 0.  So we just use the usual F statistic for joint 
significance of the year dummies.  The R-squared is about .0153 and F 

û
2û

≈ 2.90; with 6 and 1,122 
df, the p-value is about .0082.  So there is evidence of heteroskedasticity that is a function of 
time at the 1% significance level.  This suggests that, at a minimum, we should compute 
heteroskedasticity-robust standard errors, t statistics, and F statistics.  We could also use 
weighted least squares (although the form of heteroskedasticity used here may not be sufficient; 
it does not depend on educ, age, and so on). 
 
 (iv) Adding y74 ⋅ educ, … , y84 ⋅ educ allows the relationship between fertility and education 
to be different in each year; remember, the coefficient on the interaction gets added to the 
coefficient on educ to get the slope for the appropriate year. When these interaction terms are 
added to the equation, R2  .137.  The F statistic for joint significance (with 6 and 1,105 df) is 
about 1.48 with p-value  .18.  Thus, the interactions are not jointly significant at even the 10% 
level.  This is a bit misleading, however.  An abbreviated equation (which just shows the 
coefficients on the terms involving educ) is 

≈
≈

 
nkids  = −8.48 − .023 educ + …  − .056 y74 ⋅ educ − .092 y76 educ  ⋅
  (3.13)  (.054)   (.073)  (.071) 

 − .152 y78 ⋅ educ − .098 y80 ⋅ educ − .139 y82 ⋅ educ − .176 y84 ⋅ educ. 
  (.075)    (.070)  (.068)  (.070) 
 

Three of the interaction terms, y78 educ, y82⋅ ⋅ educ, and y84 ⋅ educ are statistically significant at 
the 5% level against a two-sided alternative, with the p-value on the latter being about .012.  The 
coefficients are large in magnitude as well.  The coefficient on educ – which is for the base year, 
1972 – is small and insignificant, suggesting little if any relationship between fertility and 
education in the early seventies.  The estimates above are consistent with fertility becoming more 
linked to education as the years pass.  The F statistic is insignificant because we are testing some 
insignificant coefficients along with some significant ones. 
 
C13.3 (i) Other things equal, homes farther from the incinerator should be worth more, so δ1 > 0.  
If β1 > 0, then the incinerator was located farther away from more expensive homes. 
 
 (ii) The estimated equation is 
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 nlog( )price  = 8.06 − .011 y81 + .317 log(dist) + .048 y81 ⋅ log(dist) 
   (0.51)  (.805)  (.052)  (.082) 

 n  =  321,   R2  =  .396,   2R  = .390. 
 
While 1̂δ  = .048 is the expected sign, it is not statistically significant (t statistic  .59). ≈
 
 (iii) When we add the list of housing characteristics to the regression, the coefficient on 
y81 ⋅ log(dist) becomes .062 (se = .050).  So the estimated effect is larger – the elasticity of price 
with respect to dist is .062 after the incinerator site was chosen – but its t statistic is only 1.24.  
The p-value for the one-sided alternative H1: δ1 > 0 is about .108, which is close to being 
significant at the 10% level. 
 
C13.5 (i) Using pooled OLS we obtain  
 
 nlog( )rent  = −.569 + .262 d90 + .041 log(pop) + .571 log(avginc) +  .0050 pctstu 
     (.535)  (.035)  (.023)  (.053)  (.0010) 

 n  =  128,   R2  =  .861. 
 
The positive and very significant coefficient on d90 simply means that, other things in the 
equation fixed, nominal rents grew by over 26% over the 10 year period.  The coefficient on 
pctstu means that a one percentage point increase in pctstu increases rent by half a percent (.5%).  
The t statistic of five shows that, at least based on the usual analysis, pctstu is very statistically 
significant. 
 
 (ii) The standard errors from part (i) are not valid, unless we thing ai does not really appear in 
the equation.  If ai is in the error term, the errors across the two time periods for each city are 
positively correlated, and this invalidates the usual OLS standard errors and t statistics. 
 
 (iii) The equation estimated in differences is 
 
  = .386 + .072 Δlog(pop) + .310 log(avginc) +  .0112 Δpctstu nlog( )rentΔ
    (.037)  (.088)  (.066)  (.0041) 

 n  =  64,   R2  =  .322. 
 
Interestingly, the effect of pctstu is over twice as large as we estimated in the pooled OLS 
equation.  Now, a one percentage point increase in pctstu is estimated to increase rental rates by 
about 1.1%.  Not surprisingly, we obtain a much less precise estimate when we difference 
(although the OLS standard errors from part (i) are likely to be much too small because of the 
positive serial correlation in the errors within each city).  While we have differenced away ai, 
there may be other unobservables that change over time and are correlated with Δpctstu. 
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 (iv) The heteroskedasticity-robust standard error on Δpctstu is about .0028, which is actually 
much smaller than the usual OLS standard error.  This only makes pctstu even more significant 
(robust t statistic ≈ 4).  Note that serial correlation is no longer an issue because we have no time 
component in the first-differenced equation. 
 
C13.7 (i) Pooling across semesters and using OLS gives 
 
  = −1.75 − .058 spring + .00170 sat − .0087 hsperc ntrmgpa
   (0.35)  (.048)  (.00015)  (.0010) 

  + .350 female − .254 black − .023 white − .035 frstsem 
   (.052)  (.123)  (.117)  (.076) 

  − .00034 tothrs + 1.048 crsgpa − .027 season 
   (.00073)  (0.104)    (.049) 

 n  =  732,   R2  =  .478,   2R  = .470. 
 
The coefficient on season implies that, other things fixed, an athlete’s term GPA is about .027 
points lower when his/her sport is in season.  On a four point scale, this a modest effect (although 
it accumulates over four years of athletic eligibility).  However, the estimate is not statistically 
significant (t statistic  −.55). ≈
 
 (ii) The quick answer is that if omitted ability is correlated with season then, as we know 
form Chapters 3 and 5, OLS is biased and inconsistent.  The fact that we are pooling across two 
semesters does not change that basic point. 
 If we think harder, the direction of the bias is not clear, and this is where pooling across 
semesters plays a role.  First, suppose we used only the fall term, when football is in season.  
Then the error term and season would be negatively correlated, which produces a downward bias 
in the OLS estimator of βseason.  Because βseason is hypothesized to be negative, an OLS regression 
using only the fall data produces a downward biased estimator.  [When just the fall data are used, 
ˆ

seasonβ  = −.116 (se = .084), which is in the direction of more bias.]  However, if we use just the 
spring semester, the bias is in the opposite direction because ability and season would be positive 
correlated (more academically able athletes are in season in the spring).  In fact, using just the 
spring semester gives ˆ

seasonβ  = .00089 (se = .06480), which is practically and statistically equal 
to zero.  When we pool the two semesters we cannot, with a much more detailed analysis, 
determine which bias will dominate. 
 
 (iii) The variables sat, hsperc, female, black, and white all drop out because they do not vary 
by semester.  The intercept in the first-differenced equation is the intercept for the spring.  We 
have 
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 ntrmgpaΔ  = −.237 + .019 Δfrstsem + .012 Δtothrs + 1.136 Δcrsgpa − .065 season 
   (.206)  (.069)  (.014)  (0.119)  (.043) 

 n  =  366,   R2  =  .208,   2R  = .199. 
 
Interestingly, the in-season effect is larger now:  term GPA is estimated to be about .065 points 
lower in a semester that the sport is in-season.  The t statistic is about –1.51, which gives a one-
sided p-value of about .065. 
 
 (iv) One possibility is a measure of course load.  If some fraction of student-athletes take a 
lighter load during the season (for those sports that have a true season), then term GPAs may 
tend to be higher, other things equal.  This would bias the results away from finding an effect of 
season on term GPA. 
 
C13.9 (i) When we add the changes of the nine log wage variables to equation (13.33) we obtain 
 
  = .020 − .111 d83 − .037 d84 − .0006 d85 + .031 d86 + .039 d87  nlog( )crmrteΔ
   (.021)  (.027)  (.025)  (.0241)  (.025)  (.025) 

  − .323 Δlog(prbarr) − .240 Δlog(prbconv) − .169 Δlog(prbpris) 
   (.030)  (.018)  (.026) 

  − .016 Δlog(avgsen) + .398 Δlog(polpc) − .044 Δlog(wcon)  
   (.022)  (.027)  (.030) 

  + .025 Δlog(wtuc)  − .029 Δlog(wtrd) + .0091 Δlog(wfir)     
   (0.14)  (.031)  (.0212) 

  + .022 Δlog(wser) − .140 Δlog(wmfg) − .017 Δlog(wfed) 
   (.014)  (.102)  (.172) 

  − .052 Δlog(wsta) − .031 Δlog(wloc) 
   (.096)  (.102) 

 n  =  540,   R2  =  .445,   2R  = .424. 
 
The coefficients on the criminal justice variables change very modestly, and the statistical 
significance of each variable is also essentially unaffected. 
 
 (ii) Since some signs are positive and others are negative, they cannot all really have the 
expected sign.  For example, why is the coefficient on the wage for transportation, utilities, and 
communications (wtuc) positive and marginally significant (t statistic ≈ 1.79)?  Higher 
manufacturing wages lead to lower crime, as we might expect, but, while the estimated 
coefficient is by far the largest in magnitude, it is not statistically different from zero (t 
statistic  –1.37).  The F test for joint significance of the wage variables, with 9 and 529 df, 
yields F ≈ 1.25 and p-value  .26. 

≈
≈
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C13.11. (i) Take changes as usual, holding the other variables fixed: Δmath4it = β1Δlog(rexppit) 
= (β1/100)⋅[ 100⋅Δlog(rexppit)] ≈ (β1/100)⋅( %Δrexppit).  So, if %Δrexppit = 10, then Δmath4it = 
(β1/100)⋅(10) = β1/10. 
 
 (ii) The equation, estimated by pooled OLS in first differences (except for the year 
dummies), is  
 
   =  5.95  +   .52 y94  +  6.81 y95   −   5.23 y96   −   8.49 y97   +   8.97 y98 n4mathΔ
  (.52) (.73) (.78) (.73) (.72) (.72) 
 
  −  3.45 Δlog(rexpp)  +  .635 Δlog(enroll)    +   .025 Δlunch 
  (2.76) (1.029) (.055) 
 
 n  =  3,300,   R2  =  .208. 
 
Taken literally, the spending coefficient implies that a 10% increase in real spending per pupil 
decreases the math4 pass rate by about 3.45/10 ≈ .35 percentage points. 
 
 (iii) When we add the lagged spending change, and drop another year, we get  
 
   =  6.16  +  5.70 y95   −  6.80 y96   −   8.99 y97   +   8.45 y98 n4mathΔ
  (.55) (.77) (.79) (.74) (.74) 
 
  −  1.41 Δlog(rexpp)  + 11.04 Δlog(rexpp-1)   + 2.14 Δlog(enroll)   
    (3.04) (2.79) (1.18) 
 
  +   .073 Δlunch 
   (.061) 
 
 n  =  2,750,   R2  =  .238. 
 
The contemporaneous spending variable, while still having a negative coefficient, is not at all 
statistically significant.  The coefficient on the lagged spending variable is very statistically 
significant, and implies that a 10% increase in spending last year increases the math4 pass rate 
by about 1.1 percentage points.  Given the timing of the tests, a lagged effect is not surprising.  
In Michigan, the fourth grade math test is given in January, and so if preparation for the test 
begins a full year in advance, spending when the students are in third grade would at least partly 
matter. 
 
 (iv) The heteroskedasticity-robust standard error for is about 4.28, which reduces 
the significance of Δlog(rexpp) even further.  The heteroskedasticity-robust standard error of 

is about 4.38, which substantially lowers the t statistic.  Still, Δlog(rexpp-1) is 
statistically significant at just over the 1% significance level against a two-sided alternative. 

log( )   
ˆ

rexppβΔ

1log( )   
ˆ

rexppβ
−Δ
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 (v) The fully robust standard error for is about 4.94, which even further reduces 

the t statistic for Δlog(rexpp).  The fully robust standard error for is about 5.13, 
which gives Δlog(rexpp-1) a t  statistic of about 2.15.  The two-sided p-value is about .032. 

log( )   
ˆ

rexppβΔ

1log( )   
ˆ

rexppβ
−Δ

 
 (vi) We can use four years of data for this test.  Doing a pooled OLS regression of , 1ˆ ˆon it i tr r − , 
using years 1995, 1996, 1997, and 1998 gives ρ̂ =  −.423 (se = .019), which is strong negative 
serial correlation. 
 
 (vii) The fully robust “F” test for Δlog(enroll) and Δlunch, reported by Stata 7.0, is .93.  With 
2 and 549 df, this translates into p-value = .40.  So we would be justified in dropping these 
variables, but they are not doing any harm. 
 
C13.13 (i) We can estimate all parameters except 0β  and 1β : the intercept for the base year 
cannot be estimated, and neither can coefficients on the time-constant variable educi.  
 
 
 (ii) We want to test 0 1 2 7: ,..., 0H γ γ γ= = , so there are seven restrictions to be tested. Using 
FD (which eliminates educi) and obtaining the F statistic gives F = .31 (p-value = .952). 
Therefore, there is no evidence that the return to education varied over this time period. (Also, 
each coefficient is individuall statistically insignificant at the 25% level.) 
 
 (iii) The fully robust F statistic is about 1.00, with p-value = .432. So the conclusion really 
does not change: the jγ  are jointly insignificant. 
 
 (iv) The estimated union differential in 1980 is simply the coefficient on , or about 
.106 (10.6%). For 1987, we add the coefficients on 

itunionΔ

tunionΔ  and 87td unionitΔ ⋅ , or  −.041 
(−4.1%). The difference, −14.7%, is statistically significant (t = −2.15, whether we use the usual 
pooled OLS standard error or the fully robust one). 
 
 (v) The usual F statistic is 1.03 (p-value = .405) and the statistic robust to heteroskedasticity 
and serial correlation is 1.15 (p-value = .331). Therefore, when we test all interaction terms as a 
group (seven of them), we fail to reject the null that the union differential was constant over this 
period. Most of the interactions are individually insignificant; in fact, only those for 1986 and 
1987 are close. We can get joint insignificance by lumping several statistically insignificant 
variables in with one or two statistically significant ones. But it is hard to ignore the practically 
large change from 1980 to 1987. (There might be a problem in this example with the strict 
exogeneity assumption: perhaps union membership next year depends on unexpected wage 
changes this year.) 
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CHAPTER 14 
 

SOLUTIONS TO PROBLEMS 
 
14.1 First, for each t > 1, Var(Δuit) = Var(uit – ui,t-1) = Var(uit) + Var(ui,t-1) = 22 uσ , where we use 
the assumptions of no serial correlation in {ut} and constant variance.  Next, we find the 
covariance between Δuit and Δui,t+1.  Because these each have a zero mean, the covariance is 
E(Δuit ⋅ Δui,t+1) = E[(uit – ui,t-1)(ui,t+1 – uit)] = E(uitui,t+1) – E( ) – E(ui,t-1ui,t+1) + E(ui,t-1uit) = 
−E( ) = 

2
itu

2
itu 2

uσ−  because of the no serial correlation assumption.  Because the variance is constant 
across t, by Problem 11.1, Corr(Δuit, Δui,t+1) = Cov(Δuit, Δui,t+1)/Var(∆uit) = 2 /(2 )u

2
uσ σ−  = −.5. 

 
14.3 (i) E(eit) = E(vit − ivλ ) = E(vit) − λE( iv ) = 0 because E(vit) = 0 for all t.   
 
 (ii) Var(vit − ivλ ) = Var(vit) + λ2Var( iv ) − 2λ⋅Cov(vit, iv ) = 2

vσ  + λ2 E( 2
iv ) − 2λ E(vit⋅ iv ).  

Now, 2 2 2E( )v it av 2
uσ σ σ= = +  and E(vit iv ) =  = 1

1
( )

T

it is
s

v v−

=
∑T E 1T − [ 2

aσ  + 2
aσ  + …  + ( 2

aσ  + 2
uσ ) + 

 + … 2
aσ ] = 2

aσ  + 2
uσ /T.  Therefore, E( 2

iv ) = 1
T

t=
∑

1
it iT E v− ( )v  = 2

aσ  + 2
uσ /T.  Now, we can collect 

terms:  
 
   Var(vit − ivλ )  =  . 2 2 2 2 2 2 2( ) ( / ) 2 ( /a u a u a uT Tσ σ λ σ σ λ σ σ+ + + − + )
 
Now, it is convenient to write λ = 1 − /η γ , where η ≡ 2

uσ /T and γ ≡ 2
aσ  + 2

uσ /T.  Then  
 
 Var(vit − ivλ )  =  ( 2

aσ  + 2
uσ ) − 2λ( 2

aσ  + 2
uσ /T) + λ2( 2

aσ  +  2
uσ /T) 

  = ( 2
aσ  + 2

uσ )  − 2(1 − /η γ )γ + (1 − /η γ )2γ 

  = ( 2
aσ  + 2

uσ )  − 2γ + 2 η γ⋅  + (1 − 2 /η γ  + η/γ)γ 

  = ( 2
aσ  + 2

uσ )  − 2γ + 2 η γ⋅  + (1 − 2 /η γ  + η/γ)γ 

  = ( 2
aσ  + 2

uσ )  − 2γ + 2 η γ⋅  + γ − 2 η γ⋅  + η 

  = ( 2
aσ  + 2

uσ )  + η − γ = 2
uσ . 

 
This is what we wanted to show. 
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 (iii) We must show that E(eiteis) = 0 for t ≠ s.  Now E(eiteis) = E[(vit − ivλ )(vis − ivλ )] = 
E(vitvis) − λE( iv vis) − λE(vit iv ) + λ2E( 2

iv ) = 2
aσ  − 2λ( 2

aσ  + 2
uσ /T) + λ2E( 2

iv ) = 2
aσ  − 2λ( 2

aσ  + 
2
uσ /T) + λ2( 2

aσ  + 2
uσ /T).  The rest of the proof is very similar to part (ii):   

 
 E(eiteis) = 2

aσ  − 2λ( 2
aσ  + 2

uσ /T) + λ2( 2
aσ  +  2

uσ /T) 

  = 2
aσ  − 2(1 − /η γ )γ + (1 − /η γ )2γ 

  = 2
aσ  − 2γ + 2 η γ⋅  + (1 − 2 /η γ  + η/γ)γ 

  = 2
aσ  − 2γ + 2 η γ⋅  + (1 − 2 /η γ  + η/γ)γ 

  = 2
aσ  − 2γ + 2 η γ⋅  + γ − 2 η γ⋅  + η 

  = 2
aσ  + η − γ = 0. 

 
14.5 (i) For each student we have several measures of performance, typically three or four, the 
number of classes taken by a student that have final exams.  When we specify an equation for 
each standardized final exam score, the errors in the different equations for the same student are 
certain to be correlated: students who have more (unobserved) ability tend to do better on all 
tests. 
 
 (ii) An unobserved effects model is 
 
 scoresc  =  θc + β1atndrtesc + β2majorsc + β3SATs + β4cumGPAs + as + usc, 
 
where as is the unobserved student effect.  Because SAT score and cumulative GPA depend only 
on the student, and not on the particular class he/she is taking, these do not have a c subscript.  
The attendance rates do generally vary across class, as does the indicator for whether a class is in 
the student’s major.  The term θc denotes different intercepts for different classes.  Unlike with a 
panel data set, where time is the natural ordering of the data within each cross-sectional unit, and 
the aggregate time effects apply to all units, intercepts for the different classes may not be 
needed.  If all students took the same set of classes then this is similar to a panel data set, and we 
would want to put in different class intercepts.  But with students taking different courses, the 
class we label as “1” for student A need have nothing to do with class “1” for student B.    Thus, 
the different class intercepts based on arbitrarily ordering the classes for each student probably 
are not needed.  We can replace θc with β0, an intercept constant across classes. 
 
 (iii) Maintaining the assumption that the idiosyncratic error, usc, is uncorrelated with all 
explanatory variables, we need the unobserved student heterogeneity, as, to be uncorrelated with 
atndrtesc.  The inclusion of SAT score and cumulative GPA should help in this regard, as as, is 
the part of ability that is not captured by SATs and cumGPAs.  In other words, controlling for 
SATs and cumGPAs could be enough to obtain the ceteris paribus effect of class attendance. 
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 (iv) If SATs and cumGPAs are not sufficient controls for student ability and motivation, as is 
correlated with atndrtesc, and this would cause pooled OLS to be biased and inconsistent.  We 
could use fixed effects instead.  Within each student we compute the demeaned data, where, for 
each student, the means are computed across classes.  The variables SATs and cumGPAs drop out 
of the analysis. 
 
SOLUTIONS TO COMPUTER EXERCISES 
 
C14.1 (i) This is done in Computer Exercise 13.5(i). 
 
 (ii) See Computer Exercise 13.5(ii). 
 
 (iii) See Computer Exercise 13.5(iii). 
 
 (iv) This is the only new part.  The fixed effects estimates, reported in equation form, are 
 
  = .386 y90t + .072 log(popit) + .310 log(avgincit) + .0112 pctstuit, nlog( )itrent
   (.037)  (.088)  (.066)  (.0041) 

 N  =  64,   T  =  2. 
 
(There are N = 64 cities and T = 2 years.)  We do not report an intercept because it gets removed 
by the time demeaning.  The coefficient on y90t is identical to the intercept from the first 
difference estimation, and the slope coefficients and standard errors are identical to first 
differencing.  We do not report an R-squared because none is comparable to the R-squared 
obtained from first differencing. 
 
C14.3 (i) 135 firms are used in the FE estimation.  Because there are three years, we would have 
a total of 405 observations if each firm had data on all variables for all three years.  Instead, due 
to missing data, we can use only 390 observations in the FE estimation.  The fixed effects 
estimates are 
 
  = −1.10 d88t + 4.09 d89t + 34.23 grantit n

ithrsemp
   (1.98)  (2.48)  (2.86) 

  + .504 granti,t-1 − .176 log(employit) 
   (4.127)    (4.288) 

 n  =  390,   N  =  135,   T  =  3. 
 
 (ii) The coefficient on grant means that if a firm received a grant for the current year, it 
trained each worker an average of 34.2 hours more than it would have otherwise.  This is a 
practically large effect, and the t statistic is very large. 
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 (iii) Since a grant last year was used to pay for training last year, it is perhaps not surprising 
that the grants does not carry over into more training this year.  It would if inertia played a role in 
training workers. 
 
 (iv) The coefficient on the employees variable is very small:  a 10% increase in employ 
increases predicted hours per employee by only about .018.  [Recall:   (.176/100) 
(%Δemploy).]  This is very small, and the t statistic is practically zero. 

lhrsempΔ ≈

 
C14.5 (i) Different occupations are unionized at different rates, and wages also differ by 
occupation.  Therefore, if we omit binary indicators for occupation, the union wage differential 
may simply be picking up wage differences across occupations.  Because some people change 
occupation over the period, we should include these in our analysis. 
 
 (ii) Because the nine occupational categories (occ1 through occ9) are exhaustive, we must 
choose one as the base group.  Of course the group we choose does not affect the estimated 
union wage differential.  The fixed effect estimate on union, to four decimal places, is .0804 with 
standard error = .0194.  There is practically no difference between this estimate and standard 
error and the estimate and standard error without the occupational controls ( = .0800, se = 
.0193). 

ˆ
unionβ

 
C14.7 (i) If there is a deterrent effect then β1 < 0.  The sign of β2 is not entirely obvious, 
although one possibility is that a better economy means less crime in general, including violent 
crime (such as drug dealing) that would lead to fewer murders.  This would imply β2 > 0. 
 
 (ii) The pooled OLS estimates using 1990 and 1993 are  
 
    =  −5.28   −   2.07 d93t  +  .128 execit  +   2.53 unemit 

n
itmrdrte

   (4.43) (2.14) (.263) (0.78) 
    
   N = 51,  T = 2,  R2 = .102 
 
There is no evidence of a deterrent effect, as the coefficient on exec is actually positive (though 
not statistically significant). 
 
 (iii) The first-differenced equation is  
 
    =  .413   −  .104 Δexeci   −   .067 Δunemi 

n
imrdrteΔ

   (.209) (.043) (.159) 
    
  n = 51,  R2 = .110 
 
Now, there is a statistically significant deterrent effect:  10 more executions is estimated to 
reduce the murder rate by 1.04, or one murder per 100,000 people.  Is this a large effect?  
Executions are relatively rare in most states, but murder rates are relatively low on average, too.  
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In 1993, the average murder rate was about 8.7; a reduction of one would be nontrivial.  For the 
(unknown) people whose lives might be saved via a deterrent effect, it would seem important. 
 
 (iv) The heteroskedasticity-robust standard error for Δexeci is .017.  Somewhat surprisingly, 
this is well below the nonrobust standard error.  If we use the robust standard error, the statistical 
evidence for the deterrent effect is quite strong (t ≈ −6.1).  See also Computer Exercise 13.12. 
 
 (v) Texas had by far the largest value of exec, 34.  The next highest state was Virginia, with 
11.  These are three-year totals. 
 
 (vi) Without Texas in the estimation, we get the following, with heteroskedasticity-robust 
standard errors in [⋅]: 
 
    =  .413   −  .067 Δexeci   −   .070 Δunemi 

n
imrdrteΔ

   (.211) (.105) (.160) 
   [.200] [.079] [.146] 
    
  n = 50,  R2 = .013 
 
Now the estimated deterrent effect is smaller.  Perhaps more importantly, the standard error on 
Δexeci  has increased by a substantial amount.  This happens because when we drop Texas, we 
lose much of the variation in the key explanatory variable, Δexeci. 
 
 (vii) When we apply fixed effects using all three years of data and all states we get  
 
    =  1.73 d90t   +   1.70 d93t    −  .054 execit  +   .395 unemit 

n
itmrdrte

   (.75) (.71) (.160) (.285) 
    
   N = 51,  T = 3,  R2 = .068 
 
The size of the deterrent effect is only about half as big as when 1987 is not used.  Plus, the t 
statistic, about −.34, is very small.  The earlier finding of a deterrent effect is not robust to the 
time period used.  Oddly, adding another year of data causes the standard error on the exec 
coefficient to markedly increase. 
 
C14.9 (i) The OLS estimates are  
 
 npctstck =   128.54  +   11.74 choice  +   14.34 prftshr  +  1.45 female  − 1.50 age 
  (55.17) (6.23) (7.23) (6.77) (.78) 
 
  + .70 educ   −   15.29 finc25  +   .19 finc35  −   3.86 finc50     
   (1.20) (14.23) (14.69) (14.55)   
 

−   13.75 finc75  −   2.69 finc100  −  25.05 finc101  −  .0026 wealth89 
 (16.02) (15.72) (17.80) (.0128) 
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+   6.67 stckin89  −   7.50 irain89   

(     
 

n = 194,  R2 = .108 

vestment choice is associated with about 11.7 percentage points more in stocks.  The t statistic 

(ii) These variables are not very important.  The F test for joint significant is 1.03.  With 9 
, 

(iii) There are 171 different families in the sample. 

(iv) I will only report the cluster-robust standard error for choice:  6.20.  Therefore, it is 
east 

(v) There are only 23 families with spouses in the data set. Differencing within these families 

 (6.68) 6.38) 

 
 
In
is 1.88, and so it is marginal significant. 
 
 
and 179 df, this gives p-value = .42.  Plus, when these variables are dropped from the regression
the coefficient on choice only falls to 11.15. 
 
 
 
 
essentially the same as the usual OLS standard error.  This is not very surprising because at l
171 of the 194 observations can be assumed independent of one another.  The explanatory 
variables may adequately capture the within-family correlation. 
 
 
gives  
 
npctstckΔ =   15.93  +   2.28 Δchoice  −   9.27Δprftshr  +  21.55 Δfemale  − 3.57 Δage 

 (

 −1.22 Δeduc 

n = 23,  R2 = .206,  

 (10.94) (15.00) (16.92) 21.49) (9.00) 
 
 
   (3.43) 
 

2R =   −.028 

ll of the income and wealth variables, and the stock and IRA indicators, drop out, as these are 

(vi) None of the explanatory variables is significant in part (v), and this is not too surprising.  

14.11 (i) The robust standard errors on educ, married, and union are all quite a bit larger than 

d, 

 
A
defined at the family level (and therefore are the same for the husband and wife). 
 
 
We have only 23 observations, and we are removing much of the variation in the explanatory 
variables (except the gender variable) by using within-family differences. 
 
C
the usual OLS standard errors. In the case of educ, the robust standard error is about .0111, 
compared with the usual OLS standard error .0052; this is more than a doubling. For marrie
the robust standard error is about .0260, which again is much higher than the usual standard 
error, .0157. A similar change is evident for union (from .0172 to .0274). 
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 84

 (ii) For married, the usual FE standard error is .0183, and the fully robust one is .0210. For 
union, these are .0193 and .0227, respectively. In both cases, the robust standard error is 
somewhat higher. 
 
 (iii) The relative increase in standard errors when we go from the usual standard error to the 
robust version is much higher for pooled OLS than for FE. For FE, the increases are on the order 
of 15%, or slightly higher. For pooled OLS, the increases for married and union are on the order 
of at least 60%. Typically, the adjustment for FE has a smaller relative effect because FE 
removes the main source of positive serial correlation: the unobserved effect, ai. Remember, 
pooled OLS leaves ai in the error term. The usual standard errors for both pooled OLS and FE 
are invalid with serial correlation in the idiosyncratic errors, uit, but this correlation is usually of 
a smaller degree. (And, in some applications, it is not unreasonable to think the uit have no serial 
correlation. However, if we are being careful, we allow this possibility in computing our 
standard errors and test statistics.) 
 



CHAPTER 15 
 

SOLUTIONS TO PROBLEMS 
 
15.1 (i) It has been fairly well established that socioeconomic status affects student performance.  
The error term u contains, among other things, family income, which has a positive effect on 
GPA and is also very likely to be correlated with PC ownership. 
 
 (ii) Families with higher incomes can afford to buy computers for their children.  Therefore, 
family income certainly satisfies the second requirement for an instrumental variable:  it is 
correlated with the endogenous explanatory variable [see (15.5) with x = PC and z = faminc].  
But as we suggested in part (i), faminc has a positive affect on GPA, so the first requirement for a 
good IV, (15.4), fails for faminc.  If we had faminc we would include it as an explanatory 
variable in the equation; if it is the only important omitted variable correlated with PC, we could 
then estimate the expanded equation by OLS. 
 
 (iii) This is a natural experiment that affects whether or not some students own computers.  
Some students who buy computers when given the grant would not have without the grant.  
(Students who did not receive the grants might still own computers.)  Define a dummy variable, 
grant, equal to one if the student received a grant, and zero otherwise.  Then, if grant was 
randomly assigned, it is uncorrelated with u.  In particular, it is uncorrelated with family income 
and other socioeconomic factors in u.  Further, grant should be correlated with PC:  the 
probability of owning a PC should be significantly higher for student receiving grants.  
Incidentally, if the university gave grant priority to low-income students, grant would be 
negatively correlated with u, and IV would be inconsistent. 
 
15.3 It is easiest to use (15.10) but where we drop z .  Remember, this is allowed because 

1
( )

n

i
i

z z
=

−∑ ( )ix x−  = 
1

(
n

i i
i

z x x
=

−∑ )  and similarly when we replace x with y.  So the numerator in 

the formula for 1̂β  is 
 

1 1 1
1 1 1

( )
n n n

i i i i i
i i i

z y y z y z y n y n y
= = =

⎛ ⎞− = − = −⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ,  

 

where n1 =  is the number of observations with zi = 1, and we have used the fact that 

/n1 = 

1

n

i
i

z
=
∑

1

n

i i
i

z y
=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ 1y , the average of the yi over the i with zi = 1.  So far, we have shown that the 

numerator in 1̂β  is n1( 1y  – y ).  Next, write y  as a weighted average of the averages over the 
two subgroups:   
 

y   =  (n0/n) 0y  + (n1/n) 1y , 
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where n0 = n – n1.  Therefore, 
 

1y  – y   =  [(n – n1)/n] 1y  – (n0/n) 0y   =  (n0/n) ( 1y  - 0y ). 
 
Therefore, the numerator of 1̂β  can be written as 
 

(n0n1/n)( 1y  – 0y ). 
 

By simply replacing y with x, the denominator in 1̂β  can be expressed as (n0n1/n)( 1x  – 0x ).  
When we take the ratio of these, the terms involving n0, n1, and n, cancel, leaving 
 

1̂β   =  ( 1y  – 0y )/( 1x  – 0x ). 
 

15.5 (i) From equation (15.19) with σu = σx, plim 1̂β  = β1 + (.1/.2) = β1 + .5, where 1̂β  is the IV 
estimator.  So the asymptotic bias is .5. 
 
 (ii) From equation (15.20) with σu = σx, plim 1β�  = β1 + Corr(x,u), where 1β�  is the OLS 
estimator.  So we would have to have Corr(x,u) > .5 before the asymptotic bias in OLS exceeds 
that of IV.  This is a simple illustration of how a seemingly small correlation (.1 in this case) 
between the IV (z) and error (u) can still result in IV being more biased than OLS if the 
correlation between z and x is weak (.2). 
 
15.7 (i) Even at a given income level, some students are more motivated and more able than 
others, and their families are more supportive (say, in terms of providing transportation) and 
enthusiastic about education.  Therefore, there is likely to be a self-selection problem: students 
that would do better anyway are also more likely to attend a choice school. 
 
 (ii) Assuming we have the functional form for faminc correct, the answer is yes.  Since u1 
does not contain income, random assignment of grants within income class means that grant 
designation is not correlated with unobservables such as student ability, motivation, and family 
support. 
 
 (iii) The reduced form is 
 

choice  =  π0 + π1faminc + π2grant + v2, 
 

and we need π2 ≠ 0.  In other words, after accounting for income, the grant amount must have 
some affect on choice.  This seems reasonable, provided the grant amounts differ within each 
income class. 
 
 (iv) The reduced form for score is just a linear function of the exogenous variables (see 
Problem 15.6): 

 86



 
score  =  α0 + α1faminc + α2grant + v1. 

 
This equation allows us to directly estimate the effect of increasing the grant amount on the test 
score, holding family income fixed.  From a policy perspective this is itself of some interest. 
 
15.9 Just use OLS on an expanded equation, where SAT and cumGPA are added as proxy 
variables for student ability and motivation; see Chapter 9. 
 
15.11 (i) We plug *

tx  = xt – et into yt = β0 + β1
*
tx  + ut: 

 
 yt = β0 + β1(xt – et) + ut  =  β0 + β1xt + ut – β1et 

  ≡ β0 + β1xt + vt, 
 
where vt ≡ ut – β1et.  By assumption, ut is uncorrelated with *

tx  and et; therefore, ut is 
uncorrelated with xt.  Since et is uncorrelated with *

tx , E(xtet) = E[( *
tx  + et)et] = E( *

tx et) + 
2
te ) = 2

eE( σ .  Therefore, with vt defined as above, Cov(xt,vt) = Cov(xt,ut)  – β1Cov(xt,et) =  
–β1

2
eσ  < 0 when β1 > 0.  Because the explanatory variable and the error have negative 

covariance, the OLS estimator of β1 has a downward bias [see equation (5.4)]. 
 
 (ii) By assumption E( *

1tx − ut) = E(et-1ut) = E( *
1tx − et) = E(et-1et) = 0, and so E(xt-1ut) = E(xt-1et) = 

0 because xt = *
tx  + et.  Therefore, E(xt-1vt) = E(xt-1ut) – β1E(xt-1et) = 0. 

 
 (iii) Most economic time series, unless they represent the first difference of a series or the 
percentage change, are positively correlated over time.  If the initial equation is in levels or logs, 
xt and xt-1 are likely to be positively correlated.  If the model is for first differences or percentage 
changes, there still may be positive or negative correlation between xt and xt-1. 
 
 (iv) Under the assumptions made, xt-1 is exogenous in 
 

yt  =  β0 + β1xt + vt, 
 

as we showed in part (ii):  Cov(xt-1,vt) = E(xt-1vt) = 0.  Second, xt-1 will often be correlated with xt, 
and we can check this easily enough by running a regression of xt of xt-1.  This suggests 
estimating the equation by instrumental variables, where xt-1 is the IV for xt.  The IV estimator 
will be consistent for β1 (and β0), and asymptotically normally distributed. 
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SOLUTIONS TO COMPUTER EXERCISES 
 
C15.1 (i) The regression of log(wage) on sibs gives 
 
  = 6.861 − .0279 sibs nlog( )wage
   (0.022)  (.0059) 

 n  = 935,   R2  =  .023. 
 
This is a reduced form simple regression equation.  It shows that, controlling for no other factors, 
one more sibling in the family is associated with monthly salary that is about 2.8% lower.  The t 
statistic on sibs is about –4.73.  Of course sibs can be correlated with many things that should 
have a bearing on wage including, as we already saw, years of education. 
 
 (ii) It could be that older children are given priority for higher education, and families may 
hit budget constraints and may not be able to afford as much education for children born later.  
The simple regression of educ on brthord gives 
 
  = 14.15 − .283 brthord neduc
   (0.13)  (.046) 

 n  = 852,   R2  =  .042. 
 
(Note that brthord is missing for 83 observations.)  The equation predicts that every one-unit 
increase in brthord reduces predicted education by about .28 years.  In particular, the difference 
in predicted education for a first-born and fourth-born child is about .85 years. 
 
 (iii) When brthord is used as an IV for educ in the simple wage equation we get 
 
  = 5.03 + .131 educ nlog( )wage
   (0.43)  (.032) 

 n  = 852. 
 
(The R-squared is negative.)  This is much higher than the OLS estimate (.060) and even above 
the estimate when sibs is used as an IV for educ (.122).  Because of missing data on brthord, we 
are using fewer observations than in the previous analyses. 
 
 (iv) In the reduced form equation  
 

educ  =  π0 + π1sibs + π2brthord + v, 
 

we need π2 ≠ 0 in order for the βj to be identified.  We take the null to be H0: π2 = 0, and look to 
reject H0 at a small significance level.  The regression of educ on sibs and brthord (using 852 
observations) yields 2π̂  = −.153 and se( 2π̂ ) = .057.  The t statistic is about –2.68, which rejects 
H0 fairly strongly.  Therefore, the identification assumptions appears to hold. 
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 (v) The equation estimated by IV is 
 
 nlog( )wage  = 4.94 + .137 educ + .0021 sibs 

  (1.06)  (.075)  (.0174) 

he standard error on

 

 n  = 852. 
 
T uc ˆ

edβ is much larger than we obtained in part (iii).  The 95% CI for educβ  is 
ughly −.010 to .284, which is very wide and includes the value zero.  The standard error of ro

ˆ
sibsβ  is very large relat o the coefficient estimate, rendering sibs very insignificant. 

 
vi) Letting n ieduc  be the first-stage fitted values, the correlation betweenn ieduc  and 

ive t

 ( sibsi is 
bout −.930, which is a very strong negative correlation.  This means that, for the purposes of 

h 

ld be that, for a variety of reasons, people with higher abilities grow up in 

a
using IV, multicollinearity is a serious problem here, and is not allowing us to estimate βeduc wit
much precision. 
 
C15.3 (i) IQ scores are known to vary by geographic region, and so does the availability of four 
ear colleges.  It couy

areas with four year colleges nearby. 
 
 (ii) The simple regression of IQ on nearc4 gives 
 
 mIQ  = 100.61 + 2.60 nearc4 

  (0.63)  (0.74) 

hich shows that predicted IQ  for a man who grew up near a 
ur-year college.  The difference is s t statistic 

 

   2,061,   R2  =  .0059, n  =
 
w  score is about 2.6 points higher

tatistically significant ( ≈fo  3.51). 

 part (ii), we obtain 
 
 (iii) When we add smsa66, reg662, … , reg669 to the regression in
 
 mIQ  = 104.77 + .348 nearc4 + 1.09 smsa66  + …  
   (1.62)  (.814)  (0.81) 

n  =

ummies are not reported.  Now, the 
lationship between IQ r and statistically insignificant.  In other 

nt link 

   2,061,   R2  =  .0626, 
 
where, for brevity, the coefficients on the regional d

 and nearc4 is much weakere
words, once we control for region and environment while growing up, there is no appare
between IQ score and living near a four-year college. 
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(iv) The findings from parts (ii) and (iii) show that it is important to include smsa66, reg662, 
,

15.5 (i) When we add  to the original equation and estimate it by OLS, the coefficient on 
 o  

(ii) We now add nearc2 as an IV along with nearc4.  (Although, in the reduced form for 

 
…  reg669 in the wage equation to control for differences in access to colleges that might also be 
correlated with ability. 
 
C 2v̂ 2v̂  
is about –.057 with a t statistic of about –1.08.  Therefore, while the difference in the estimates f
the return to education is practically large, it is not statistically significant. 
 
 
educ, nearc2 is not significant.)  The 2SLS estimate of β1 is now .157, se( 1̂β ) = .053.  So the 
estimate is even larger. 
 
 (iii) Le be the 2SLS residuals.  We regress these on all exogenous variables, including t ˆiu
nearc2 and nearc4.  The n-R-squared statistic is (3,010)(.0004) ≈ 1.20.  There is one over-
identifying restriction, so we compute the p-value from the 2

1χ  distribution:  p-value = P( 2
1χ  > 

15.7 (i) As usual, if unemt is correlated with et, OLS will be biased and inconsistent for 

(ii) If E(et|inft-1,unemt-1, ) = 0 then unemt-1 is uncorrelated with et, which means unemt-1 
t f

Δinft  = β0 + β1unemt + et. 

 (iii) The second requirement for unemt-1 to be a valid IV for unemt is that unemt-1 must be 

1.20) ≈ .55, so the overidentifying restriction is not rejected
 

. 

C
estimating β1. 
 
  …
satisfies the first requiremen or an IV in 
 

 

sufficiently correlated.  The regression unemt on unemt-1 yields 
 

n
tunem  = 1.57 + .732 unemt-1 

 (0.58) (.097) 

herefore, there is a strong, positive correlation between unemt and unemt-1. 

(iv) The expectations-augmented Phillips curve estimated by IV is 

 = .694 − .138 unemt 
 1

   

 n  =  48,   R2  =  .554. 
 
T
 
 
 
 m

tinfΔ
  ( .883)  (.319) 

 n  =  48,   R2  =  .048. 
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The IV estimate of β1 is much lower in magnitude than the OLS estimate (−.543), and 1̂β  is not 
statistically different from zero.  The OLS estimate had a t statistic of about –2.36 [see equation 
(11.19)]. 
 
C15.9 (i) The IV (2SLS) estimates are  
 
   5.22  +   .0936 educ  +  .0209 exper  +  .0115 tenure  −   .183 black nlog( )wage =
  (.54) (.0337) (.0084) (.0027) (.050) 
 
 n = 935,  R2 = .169 
 
 (ii) The coefficient on n ieduc  in the second stage regression is, naturally, .0936.  But the 
reported standard error is .0353, which is slightly too large. 
 
 (iii) When instead we (incorrectly) use k ieduc  in the second stage regression, its coefficient is 
.0700 and the corresponding standard error is .0264.  Both are too low.  The reduction in the 
estimated return to education from about 9.4% to 7.0% is not trivial.  This illustrates that it is 
best to avoid doing 2SLS manually. 

 91



CHAPTER 16 
 

SOLUTIONS TO PROBLEMS 
 
16.1 (i) If α1 = 0 then y1 = β1z1 + u1, and so the right-hand-side depends only on the exogenous 
variable z1 and the error term u1.  This then is the reduced form for y1.  If α1 = 0, the reduced 
form for y1 is y1 = β2z2 + u2.  (Note that having both α1 and α2 equal zero is not interesting as it 
implies the bizarre condition u2 – u1 =  β1z1 − β2z2.) 
 If α1 ≠ 0 and α2 = 0, we can plug y1 = β2z2 + u2 into the first equation and solve for y2: 
 

β2z2 + u2  = α1y2 + β1z1 + u1 
or 

α1y2  =  β1z1 − β2z2 + u1 – u2. 
 
Dividing by α1 (because α1 ≠ 0) gives 
 
 y2 = (β1/α1)z1 – (β2/α1)z2 + (u1 – u2)/α1 

  ≡ π21z1 + π22z2 + v2, 
 
where π21 = β1/α1, π22 = −β2/α1, and v2 = (u1 – u2)/α1.  Note that the reduced form for y2 
generally depends on z1 and z2 (as well as on u1 and u2). 
 
 (ii) If we multiply the second structural equation by (α1/α2) and subtract it from the first 
structural equation, we obtain 
 
 y1 – (α1/α2)y1 = α1y2 − α1y2 + β1z1 – (α1/α2)β2z2 + u1 – (α1/α2)u2 

  = β1z1 – (α1/α2)β2z2 + u1 – (α1/α2)u2 
 
or 
 

[1 – (α1/α2)]y1  =  β1z1 – (α1/α2)β2z2 + u1 – (α1/α2)u2. 
 

Because α1 ≠ α2, 1 – (α1/α2) ≠ 0, and so we can divide the equation by 1 – (α1/α2) to obtain the 
reduced form for y1:  y1 = π11z1 + π12z2 + v1, where π11 = β1/[1 – (α1/α2)], π12 = −(α1/α2)β2/[1 – 
(α1/α2)], and v1 = [u1 – (α1/α2)u2]/[1 – (α1/α2)]. 
 A reduced form does exist for y2, as can be seen by subtracting the second equation from the 
first: 
 

0  =  (α1 – α2)y2 + β1z1 – β2z2 + u1 – u2; 
 

because α1 ≠ α2, we can rearrange and divide by α1 − α2 to obtain the reduced form. 
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 (iii) In supply and demand examples, α1 ≠ α2 is very reasonable.  If the first equation is the 
supply function, we generally expect α1 > 0, and if the second equation is the demand function, 
α2 < 0.  The reduced forms can exist even in cases where the supply function is not upward 
sloping and the demand function is not downward sloping, but we might question the usefulness 
of such models. 
 
16.3 No.  In this example, we are interested in estimating the tradeoff between sleeping and 
working, controlling for some other factors.  OLS is perfectly suited for this, provided we have 
been able to control for all other relevant factors.  While it is true individuals are assumed to 
optimally allocate their time subject to constraints, this does not result in a system of 
simultaneous equations.  If we wrote down such a system, there is no sense in which each 
equation could stand on its own; neither would have an interesting ceteris paribus interpretation.  
Besides, we could not estimate either equation because economic reasoning gives us no way of 
excluding exogenous variables from either equation.  See Example 16.2 for a similar discussion. 
 
16.5 (i) Other things equal, a higher rate of condom usage should reduce the rate of sexually 
transmitted diseases (STDs).  So β1 < 0. 
 
 (ii) If students having sex behave rationally, and condom usage does prevent STDs, then 
condom usage should increase as the rate of infection increases. 
 
 (iii) If we plug the structural equation for infrate into conuse = γ0 + γ1infrate + …, we see 
that conuse depends on γ1u1.  Because γ1 > 0, conuse is positively related to u1.  In fact, if the 
structural error (u2) in the conuse equation is uncorrelated with u1, Cov(conuse,u1) = γ1Var(u1) > 
0.  If we ignore the other explanatory variables in the infrate equation, we can use equation (5.4) 
to obtain the direction of bias:  1

ˆplim( )β  − β1 > 0 because Cov(conuse,u1) > 0, where 1̂β  denotes 
the OLS estimator.  Since we think β1 < 0, OLS is biased towards zero.  In other words, if we use 
OLS on the infrate equation, we are likely to underestimate the importance of condom use in 
reducing STDs.   (Remember, the more negative is β1, the more effective is condom usage.) 
 
 (iv) We would have to assume that condis does not appear, in addition to conuse, in the 
infrate equation.  This seems reasonable, as it is usage that should directly affect STDs, and not 
just having a distribution program.  But we must also assume condis is exogenous in the infrate:  
it cannot be correlated with unobserved factors (in u1) that also affect infrate. 
 We must also assume that condis has some partial effect on conuse, something that can be 
tested by estimating the reduced form for conuse.  It seems likely that this requirement for an IV 
– see equations (15.30) and (15.31) – is satisfied. 
 
16.7 (i) Attendance at women’s basketball may grow in ways that are unrelated to factors that we 
can observe and control for.  The taste for women’s basketball may increase over time, and this 
would be captured by the time trend. 
 
 (ii) No. The university sets the price, and it may change price based on expectations of next 
year’s attendance; if the university uses factors that we cannot observe, these are necessarily in 
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the error term ut.  So even though the supply is fixed, it does not mean that price is uncorrelated 
with the unobservables affecting demand. 
 
 (iii) If people only care about how this year’s team is doing, SEASPERCt-1 can be excluded 
from the equation once WINPERCt has been controlled for.  Of course, this is not a very good 
assumption for all games, as attendance early in the season is likely to be related to how the team 
did last year.  We would also need to check that 1PRICEt is partially correlated with 
SEASPERCt-1 by estimating the reduced form for 1PRICEt. 
 
 (iv) It does make sense to include a measure of men’s basketball ticket prices, as attending a 
women’s basketball game is a substitute for attending a men’s game.  The coefficient on 
1MPRICEt would be expected to be positive:  an increase in the price of men’s tickets should 
increase the demand for women’s tickets.  The winning percentage of the men’s team is another 
good candidate for an explanatory variable in the women’s demand equation. 
 
 (v) It might be better to use first differences of the logs, which are then growth rates.  We 
would then drop the observation for the first game in each season. 
 
 (vi) If a game is sold out, we cannot observe true demand for that game.  We only know that 
desired attendance is some number above capacity.  If we just plug in capacity, we are 
understating the actual demand for tickets.  (Chapter 17 discusses censored regression methods 
that can be used in such cases.) 
 
 
SOLUTIONS TO COMPUTER EXERCISES 
 
C16.1 (i) Assuming the structural equation represents a causal relationship, 100⋅β1 is the 
approximate percentage change in income if a person smokes one more cigarette per day. 
 
 (ii) Since consumption and price are, ceteris paribus, negatively related, we expect γ5 ≤ 0 
(allowing for γ5) = 0.  Similarly, everything else equal, restaurant smoking restrictions should 
reduce cigarette smoking, so γ5 ≤ 0. 
 
 (iii) We need γ5 or γ6 to be different from zero.  That is, we need at least one exogenous 
variable in the cigs equation that is not also in the log(income) equation. 
 
 (iv) OLS estimation of the log(income) equation gives 
 
  = 7.80 + .0017 cigs + .060 educ + .058 age − .00063 age2 log( )income
   (0.17)  (.0017)  (.008)  (.008)  (.00008) 

 n  =  807,   R2
  =  .165. 
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The coefficient on cigs implies that cigarette smoking causes income to increase, although the 
coefficient is not statistically different from zero.  Remember, OLS ignores potential 
simultaneity between income and cigarette smoking. 
 
 (v) The estimated reduced form for cigs is 
 
  = 1.58 − .450 educ + .823 age − .0096 age2 − .351 log(cigpric) cigs
   (23.70)  (.162)  (.154)  (.0017)  (5.766) 

  − 2.74 restaurn 
   (1.11) 

 n  =  807,   R2  =  .051. 
 
While log(cigpric) is very insignificant, restaurn had the expected negative sign and a t statistic 
of about –2.47.  (People living in states with restaurant smoking restrictions smoke almost three 
fewer cigarettes, on average, given education and age.)  We could drop log(cigpric) from the 
analysis but we leave it in.  (Incidentally, the F test for joint significance of log(cigpric) and 
restaurn yields p-value  .044.) ≈
 
 (vi) Estimating the log(income) equation by 2SLS gives 
 
  = 7.78 − .042 cigs + .040 educ + .094 age − .00105 age2 log( )income
   (0.23)  (.026)  (.016)  (.023)  (.00027) 

 n  =  807. 
 
Now the coefficient on cigs is negative and almost significant at the 10% level against a two-
sided alternative.  The estimated effect is very large:  each additional cigarette someone smokes 
lowers predicted income by about 4.2%.  Of course, the 95% CI for βcigs is very wide. 
 
 (vii) Assuming that state level cigarette prices and restaurant smoking restrictions are 
exogenous in the income equation is problematical.  Incomes are known to vary by region, as do 
restaurant smoking restrictions.  It could be that in states where income is lower (after controlling 
for education and age), restaurant smoking restrictions are less likely to be in place. 
 
C16.3 (i) The OLS estimates are 
 
  = 25.23 − .215 open inf
   (4.10)  (.093) 

 n  =  114,   R2  =  .045. 
 
The IV estimates are 
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  = 29.61 − .333 open inf
   (5.66)  (.140) 

 n  =  114,   R2  =  .032. 
 
The OLS coefficient is the same, to three decimal places, when log(pcinc) is included in the 
model.  The IV estimate with log(pcinc) in the equation is −.337, which is very close to −.333.  
Therefore, dropping log(pcinc) makes little difference. 
 
 (ii) Subject to the requirement that an IV be exogenous, we want an IV that is as highly 
correlated as possible with the endogenous explanatory variable.  If we regress open on land we 
obtain R2 = .095.  The simple regression of open on log(land) gives R2 = .448.  Therefore, 
log(land) is much more highly correlated with open.  Further, if we regress open on log(land) 
and land we get 
 
  = 129.22 − 8.40 log(land) + .0000043 land open
   (10.47)  (0.98)  (.0000031) 

 n  =  114,   R2  =  .457. 
 
While log(land) is very significant, land is not, so we might as well use only log(land) as the IV 
for open. 
 
 (iii) When we add oil to the original model, and assume oil is exogenous, the IV estimates 
are 
 
 inf  = 24.01 − .337 open + .803 log(pcinc) − 6.56 oil 
   (16.04)  (.144)  (2.12)  (9.80) 

 n  =  114,   R2  =  .035. 
 
Being an oil producer is estimated to reduce average annual inflation by over 6.5 percentage 
points, but the effect is not statistically significant.  This is not too surprising, as there are only 
seven oil producers in the sample. 
 
C16.5 This is an open-ended question without a single answer.  Even if we settle on extending 
the data through a particular year, we might want to change the disposable income and 
nondurable consumption numbers in earlier years, as these are often recalculated.  For example, 
the value for real disposable personal income in 1995, as reported in Table B-29 of the 1997 
Economic Report of the President (ERP), is $4,945.8 billions.  In the 1999 ERP, this value has 
been changed to $4,906.0 billions (see Table B-31).  All series can be updated using the latest 
edition of the ERP.  The key is to use real values and make them per capita by dividing by 
population.  Make sure that you use nondurable consumption. 
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C16.7 (i) If county administrators can predict when crime rates will increase, they may hire more 
police to counteract crime.  This would explain the estimated positive relationship between 
Δlog(crmrte) and Δlog(polpc) in equation (13.33). 
 
 (ii) This may be reasonable, although tax collections depend in part on income and sales 
taxes, and revenues from these depend on the state of the economy, which can also influence 
crime rates. 
 
 (iii) The reduced form for Δlog(polpcit), for each i and t, is 
 
 Δlog(polpcit) = π0 + π1d83t + π2d84t + π3d85t + π4d86t + π5d87t 

   + π6Δlog(prbarrit) + π7Δlog(prbconvit) + π8Δlog(prbprisit) 

   + π9Δlog (avgsenit) + π10Δlog(taxpcit) + vit. 
 
We need π10 ≠ 0 for Δlog(taxpcit) to be a reasonable IV candidate for Δlog(polpcit).  When we 
estimate this equation by pooled OLS (N = 90, T = 6 for n = 540), we obtain 10π̂  = .0052 with a t 
statistic of only .080.  Therefore, Δlog(taxpcit) is not a good IV for Δlog(polpcit). 
 
 (iv) If the grants were awarded randomly, then the grant amounts, say grantit for the dollar 
amount for county i and year t, will be uncorrelated with Δuit, the changes in unobservables that 
affect county crime rates.  By definition, grantit should be correlated with Δlog(polpcit) across i 
and t.  This means we have an exogenous variable that can be omitted from the crime equation 
and that is (partially) correlated with the endogenous explanatory variable.  We could reestimate 
(13.33) by IV. 
 
C16.9 (i) The demand function should be downward sloping, so 1α  < 0: as price increases, 
quantity demanded for air travel decreases. 
 
 (ii) The estimated price elasticity is −.391 (t statistic = −5.82). 
 
 (iii) We must assume that passenger demand depends only on air fare, so that, once price is 
controlled for, passengers are indifferent about the fraction of travel accounted for by the largest 
carrier.  
 
 (iv) The reduced form equation for log(fare) is 
 
  log( )fare  =   6.19   +   .395 concen   −    .936 log(dist)  +   .108 [log(dist)]2   
   (0.89) (.063) (.272) (.021) 
 
  n = 1,149,  R2 = .408 
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The coefficient on concen shows a pretty strong link between concentration and fare.  If concen 
increases by .10 (10 percentage points), fare is estimated to increase by almost 4%.  The t 
statistic is about 6.3. 
 
 (v) Using concen as an IV for log(fare) [and where the distance variables act as their own 
IVs], the estimated price elasticity is −1.17, which shows much greater price sensitivity than did 
the OLS estimate.  The IV estimate suggests that a one percent increase in fare leads to a slightly 
more than one percent increase drop in passenger demand.  Of course, the standard error of the 
IV estimate is much larger (about .389 compared with the OLS standard error of .067), but the 
IV estimate is statistically significant (t is about −3.0). 
 
 (vi) The coefficient on ldist = log(dist) is about −2.176 and that on ldistsq = [log(dist)]2 is 
about .187. Therefore, the relationship between log(passen) and log(dist) has a U-shape, as given 
in the following graph: 
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The minimum is at about ldist = 2.176/.187 ≈ 5.82, which, in terms of distance, is about 337 
miles. About 11.3% of the routes are less than 337 miles long.  If the estimated quadratic is 
believable, the lowest demand occurs for short, but not very short, routes (holding price fixed).  
It is possible, of course, that we should ignore the quadratic to the left of the turning point, but it 
does contain a nontrivial fraction of the observations. 
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CHAPTER 17 
 

SOLUTIONS TO PROBLEMS 
 
17.1 (i) Let m0 denote the number (not the percent) correctly predicted when yi = 0 (so the 
prediction is also zero) and let m1 be the number correctly predicted when yi = 1.  Then the 
proportion correctly predicted is (m0 + m1)/n, where n is the sample size.  By simple algebra, we 
can write this as (n0/n)(m0/n0) + (n1/n)(m1/n1) = (1 − y )(m0/n0) + y (m1/n1), where we have used 
the fact that y  = n1/n (the proportion of the sample with yi = 1) and 1 − y  = n0/n (the proportion 
of the sample with yi = 0).  But m0/n0 is the proportion correctly predicted when yi = 0, and m1/n1 
is the proportion correctly predicted when yi = 1.  Therefore, we have 
 

(m0 + m1)/n  =  (1 − y )(m0/n0) + y (m1/n1). 
 

If we multiply through by 100 we obtain 
 

p̂   =  (1 − y )  + 0q̂ y ⋅ , 1q̂
 

where we use the fact that, by definition, p̂  = 100[(m0 + m1)/n],  = 100(m0/n0), and  = 
100(m1/n1). 

0q̂ 1̂q

 
 (ii) We just use the formula from part (i):  p̂  = .30(80) + .70(40) = 52.  Therefore, overall we 
correctly predict only 52% of the outcomes.  This is because, while 80% of the time we correctly 
predict y = 0, yi = 0 accounts for only 30 percent of the outcomes.  More weight (.70) is given to 
the predictions when yi = 1, and we do much less well predicting that outcome (getting it right 
only 40% of the time). 
 
17.3 (i) We use the chain rule and equation (17.23).  In particular, let x1 ≡ log(z1).  Then, by the 
chain rule, 
 

 1

1 1 1 1

( | 0, ) ( | 0, ) ( | 0, ) 1 ,xE y y E y y E y y
z x z x 1z

∂∂ > ∂ > ∂ >
= ⋅ = ⋅

∂ ∂ ∂ ∂
x x x  

 
where we use the fact that the derivative of log(z1) is 1/z1.  When we plug in (17.23) for  
∂E(y|y > 0,x)/ ∂x1, we obtain the answer. 
 
 (ii) As in part (i), we use the chain rule, which is now more complicated: 
 

 1 2

1 1 1 2

( | 0, ) ( | 0, ) ( | 0, ) ,
1

x xE y y E y y E y y
z x z x z

∂ ∂∂ > ∂ > ∂ >
= ⋅ +

∂ ∂ ∂ ∂
x x x

⋅
∂
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where x1 = z1 and x2 = .  But ∂E(y|y > 0,x)/ ∂x1 = β1{1 − λ(xβ/σ)[xβ/σ + λ(xβ/σ)]}, ∂E(y|y > 
0,x)/δx2 = β2{1 − λ(xβ/σ)[xβ/σ + λ(xβ/σ)]}, ∂x1/∂z1 = 1, and ∂x2/∂z1 = 2z1.  Plugging these into 
the first formula and rearranging gives the answer. 

2
1z

 
17.5 (i) patents is a count variable, and so the Poisson regression model is appropriate. 
 
 (ii) Because β1 is the coefficient on log(sales), β1 is the elasticity of patents with respect to 
sales.  (More precisely, β1 is the elasticity of E(patents|sales,RD) with respect to sales.) 
 
 (iii) We use the chain rule to obtain the partial derivative of exp[β0 + β1log(sales) + β2RD + 
β3RD2] with respect to RD: 
 

( | ,E patents sales RD
RD

∂
∂

)   =  (β2 + 2β3RD)exp[β0 + β1log(sales) + β2RD + β3RD2]. 

 
A simpler way to interpret this model is to take the log and then differentiate with respect to RD:  
this gives β2 + 2β3RD, which shows that the semi-elasticity of patents with respect to RD is 
100(β2 + 2β3RD). 
 
17.7 For the immediate purpose of determining the variables that explain whether accepted 
applicants choose to enroll, there is not a sample selection problem.  The population of interest is 
applicants accepted by the particular university, and you have a random sample from this 
population.  Therefore, it is perfectly appropriate to specify a model for this group, probably a 
linear probability model, a probit model, or a logit model, and estimate the model using the data 
at hand.  OLS or maximum likelihood estimation will produce consistent, asymptotically normal 
estimators.  This is a good example of where many data analysts’ knee-jerk reaction might be to 
conclude that there is a sample selection problem, which is why it is important to be very precise 
about the purpose of the analysis, which requires one to clearly state the population of interest. 
 If the university is hoping the applicant pool changes in the near future, then there is a 
potential sample selection problem:  the current students that apply may be systematically 
different from students that may apply in the future.  As the nature of the pool of applicants is 
unlikely to change dramatically over one year, the sample selection problem can be mitigated, if 
not entirely eliminated, by updating the analysis after each first-year class has enrolled. 
 
 
SOLUTIONS TO COMPUTER EXERCISES 
 
C17.1 (i) If spread is zero, there is no favorite, and the probability that the team we (arbitrarily) 
label the favorite should have a 50% chance of winning. 
 
 (ii) The linear probability model estimated by OLS gives 
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 favwin  = .577 + .0194 spread 
   (.028)  (.0023) 
   [.032]  [.0019] 

 n  =  553,   R2  =  .111. 
 
where the usual standard errors are in (⋅) and the heteroskedasticity-robust standard errors are in 
[⋅].  Using the usual standard error, the t statistic for H0: β0 = .5 is (.577 − .5)/.028 = 2.75, which 
leads to rejecting H0 against a two-sided alternative at the 1% level (critical value  2.58).  
Using the robust standard error reduces the significance but nevertheless leads to strong rejection 
of H0 at the 2% level against a two-sided alternative:  t = (.577 − .5)/.032 

≈

≈ 2.41 (critical 
value ≈ 2.33). 
 
 (iii) As we expect, spread is very statistically significant using either standard error, with a t 
statistic greater than eight.  If spread = 10 the estimated probability that the favored team wins is 
.577 + .0194(10) = .771. 
 
 (iv) The probit results are given in the following table: 
 

Dependent Variable:  favwin 
Independent 
Variable 

Coefficient 
(Standard Error) 

spread .0925 
(.0122) 

constant −.0106 
(.1037) 

Number of Observations    553 

Log Likelihood Value −263.56 

Pseudo R-Squared .129 
 
In the probit model 
 

P(favwin = 1|spread)  =  Φ(β0 + β1spread), 
 

where Φ(⋅) denotes the standard normal cdf, if β0 = 0 then 
 

P(favwin = 1|spread)  =  Φ(β1spread) 
 

and, in particular, P(favwin = 1|spread = 0) = Φ(0) = .5.  This is the analog of testing whether the 
intercept is .5 in the LPM.  From the table, the t statistic for testing H0: β0 = 0 is only about -.102, 
so we do not reject H0. 
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 (v) When spread = 10 the predicted response probability from the estimated probit model is 
Φ[-.0106 + .0925(10)] = Φ(.9144)  .820.  This is somewhat above the estimate for the LPM. ≈
 
 (vi) When favhome, fav25, and und25 are added to the probit model, the value of the log-
likelihood becomes –262.64.  Therefore, the likelihood ratio statistic is 2[−262.64 – (−263.56)] = 
2(263.56 – 262.64) = 1.84.  The p-value from the 2

3χ  distribution is about .61, so favhome, 
fav25, and und25 are jointly very insignificant.  Once spread is controlled for, these other factors 
have no additional power for predicting the outcome. 
 
C17.3 (i) Out of 616 workers, 172, or about 18%, have zero pension benefits.  For the 444 
workers reporting positive pension benefits, the range is from $7.28 to $2,880.27.  Therefore, we 
have a nontrivial fraction of the sample with pensiont = 0, and the range of positive pension 
benefits is fairly wide.  The Tobit model is well-suited to this kind of dependent variable. 
 
 (ii) The Tobit results are given in the following table: 
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Dependent Variable:  pension 

Independent 
Variable 

(1) (2) 

exper 5.20 
(6.01) 

4.39 
(5.83) 

age −4.64 
(5.71) 

−1.65 
(5.56) 

tenure 36.02 
(4.56) 

28.78 
(4.50) 

educ 93.21 
(10.89) 

106.83 
(10.77) 

depends (35.28 
(21.92) 

41.47 
(21.21) 

married (53.69 
(71.73) 

19.75 
(69.50) 

white 144.09 
(102.08) 

159.30 
(98.97) 

male 308.15 
(69.89) 

257.25 
(68.02) 

union ––––– 439.05 
(62.49) 

constant −1,252.43 
(219.07) 

−1,571.51 
(218.54) 

 
Number of Observations 616 616 

Log Likelihood Value −3,672.96 −3648.55 

σ̂  677.74 652.90 
 
 
In column (1), which does not control for union, being white or male (or, of course, both) 
increases predicted pension benefits, although only male is statistically significant (t ≈ 4.41). 
 
 (iii) We use equation (17.22) with exper = tenure = 10, age = 35, educ = 16, depends = 0, 
married = 0, white = 1, and male = 1 to estimate the expected benefit for a white male with the 
given characteristics.  Using our shorthand, we have 
 

ˆxβ   = −1,252.5 + 5.20(10) – 4.64(35) + 36.02(10) + 93.21(16) + 144.09 + 308.15 = 940.90. 
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Therefore, with σ̂  = 677.74 we estimate E(pension|x) as 
 

Φ(940.9/677.74)⋅(940.9) + (677.74)⋅φ(940.9/677.74) ≈ 966.40. 
 
For a nonwhite female with the same characteristics, 
 

ˆxβ   = −1,252.5 + 5.20(10) – 4.64(35) + 36.02(10) + 93.21(16)  =  488.66. 
 
Therefore, her predicted pension benefit is 
 

Φ(488.66/677.74)⋅(488.66) + (677.74)⋅φ(488.66/677.74) ≈ 582.10. 
 
The difference between the white male and nonwhite female is 966.40 – 582.10 = $384.30. 
 
 (iv) Column (2) in the previous table gives the results with union added.  The coefficient is 
large, but to see exactly how large, we should use equation (17.22) to estimate E(pension|x) with 
union = 1 and union = 0, setting the other explanatory variables at interesting values.  The t 
statistic on union is over seven. 
 
 (v) When peratio is used as the dependent variable in the Tobit model, white and male are 
individually and jointly insignificant.  The p-value for the test of joint significance is about .74.  
Therefore, neither whites nor males seem to have different tastes for pension benefits as a 
fraction of earnings.  White males have higher pension benefits because they have, on average, 
higher earnings. 
 
C17.5 (i) The Poisson regression results are given in the following table: 
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Dependent Variable:  kids 

Independent 
Variable 

 
Coefficient 

Standard 
Error 

educ −.048 .007 
age .204 .055 
age2 −.0022 .0006 
black .360 .061 
east .088 .053 
northcen .142 .048 
west .080 .066 
farm −.015 .058 
othrural −.057 .069 
town .031 .049 
smcity .074 .062 
y74 .093 .063 
y76 −.029 .068 
y78 −.016 .069 
y80 −.020 .069 
y82 −.193 .067 
y84 −.214 .069 
constant −3.060 1.211 

n  =  1,129 
L  =  −2,070.23 
σ̂   = .944 

 
The coefficient on y82 means that, other factors in the model fixed, a woman’s fertility was 
about 19.3% lower in 1982 than in 1972. 
 
 (ii) Because the coefficient on black is so large, we obtain the estimated proportionate 
difference as exp(.36) – 1  .433, so a black woman has 43.3% more children than a comparable 
nonblack woman.  (Notice also that black is very statistically significant.) 

≈

 
 (iii) From the above table, σ̂  = .944, which shows that there is actually underdispersion in 
the estimated model. 
 
 (iv) The sample correlation between kidsi and ikids  is about .348, which means the R-
squared (or, at least one version of it), is about (.348)2 ≈ .121.  Interestingly, this is actually 
smaller than the R-squared for the linear model estimated by OLS.  (However, remember that 
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OLS obtains the highest possible R-squared for a linear model, while Poisson regression does not 
obtain the highest possible R-squared for an exponential regression model.) 
 
C17.7 (i) When log(wage) is regressed on educ, exper, exper2, nwifeinc, age, kidslt6, and 
kidsge6, the coefficient and standard error on educ are .0999 (se = .0151). 
 
 (ii) The Heckit coefficient on educ is .1187 (se = .0341), where the standard error is just the 
usual OLS standard error.  The estimated return to education is somewhat larger than without the 
Heckit corrections, but the Heckit standard error is over twice as large. 
 
 (iii) Regressing λ̂  on educ, exper, exper2, nwifeinc, age, kidslt6, and kidsge6 (using only the 
selected sample of 428) produces R2 ≈ .962, which means that there is substantial 
multicollinearity among the regressors in the second stage regression.  This is what leads to the 
large standard errors.  Without an exclusion restriction in the log(wage) equation, λ̂  is almost a 
linear function of the other explanatory variables in the sample. 
 
C17.9 (i) 248. 
 
 (ii) The distribution is not continuous:  there are clear focal points, and rounding.  For 
example, many more people report one pound than either two-thirds of a pound or 1 1/3 pounds.  
This violates the latent variable formulation underlying the Tobit model, where the latent error 
has a normal distribution.  Nevertheless, we should view Tobit in this context as a way to 
possibly improve functional form.  It may work better than the linear model for estimating the 
expected demand function. 
 
 (ii) The following table contains the Tobit estimates and, for later comparison, OLS 
estimates of a linear model: 
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Dependent Variable:  ecolbs 

Independent 
Variable 

Tobit OLS 
(Linear Model) 

ecoprc −5.82 
(.89) 

−2.90 
(.59) 

regprc 5.66 
(1.06) 

3.03 
(.71) 

faminc .0066 
(.0040) 

.0028 
(.0027) 

hhsize .130 
(.095) 

.054 
(.064) 

constant 1.00 
(.67) 

1.63 
(.45) 

Number of Observations 660 660 

Log Likelihood Value −1,266.44 ⎯⎯⎯ 

σ̂  3.44 2.48 

R-squared      .0369 .0393 
 
Only the price variables, ecoprc and regprc, are statistically significant at the 1% level. 
 
 (iv) The signs of the price coefficients accord with basic demand theory:  the own-price 
effect is negative, the cross price effect for the substitute good (regular apples) is positive. 
 
 (v) The null hypothesis can be stated as H0: β1 + β2 = 0.  Define θ1 = β1 + β2.  Then 1̂θ =  
−.16.  To obtain the t statistic, I write β2 = θ1 − β1, plug in, and rearrange.  This results in doing 
Tobit of ecolbs on (ecoprc − regprc), regprc, faminc, and hhsize.  The coefficient on regprc is 1̂θ  
and, of course we get its standard error:  about .59.  Therefore, the t statistic is about −.27 and p-
value = .78.  We do not reject the null. 
 
 (vi) The smallest fitted value is .798, while the largest is 3.327.   
 
 (vii) The squared correlation between ecolbsi and iecolbs  is about .0369.  This is one 
possible R-squared measure. 
 
 (viii) The linear model estimates are given in the table for part (ii).  The OLS estimates are 
smaller than the Tobit estimates because the OLS estimates are estimated partial effects on 
E(ecolbs|x), whereas the Tobit coefficients must be scaled by the term in equation (17.27).  The 
scaling factor is always between zero and one, and often substantially less than one.  The Tobit 
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model does not fit better, at least in terms of estimating E(ecolbs|x):  the linear model R-squared 
is a bit larger (.0393 versus .0369). 
 
 (ix) This is not a correct statement.  We have another case where we have confidence in the 
ceteris paribus price effects (because the price variables are exogenously set), yet we cannot 
explain much of the variation in ecolbs.  The fact that demand for a fictitious product is hard to 
explain is not very surprising. 
 
C17.11 (i) The fraction of women in the work force is 3,286/5,634 ≈ .583. 
 
 (ii) The OLS results using the selected sample are 
 
  =  .649  +   .099 educ  +   .020 exper  −   .00035 exper2 log( )wage
  (.060) (.004) (.003) (.00008) 
 
  −  .030 black   +  .014 hispanic 
  (.034) (.036) 
 
 n = 3,286,  R2 = .205 
 
While the point estimates imply blacks earn, on average, about 3% less and Hispanics about 
1.3% more than the base group (non-black, non-Hispanic), neither coefficient is statistically 
significant – or even very close to statistical significance at the usual levels.  The joint F test 
gives a p-value of about .63.  So, there is little evidence for differences by race and ethnicity 
once education and experience have been controlled for. 
 
 (iii) The coefficient on nwifeinc is −.0091 with t = −13.47 and the coefficient on kidlt6 is 
−.500 with t = −11.05.  We expect both coefficients to be negative.  If a woman’s spouse earns 
more, she is less likely to work.  Having a young child in the family also reduces the probability 
that the woman works.  Each variable is very statistically significant.  (Not surprisingly, the joint 
test also yields a p-value of essentially zero.) 
 
 (iv) We need at least one variable to affect labor force participation that does not have a 
direct effect on the wage offer.  So, we must assume that, controlling for education, experience, 
and the race/ethnicity variables, other income and the presence of a young children do not affect 
wage.  These propositions could be false if, say, employers discriminate against women who 
have young children or whose husbands work.  Further, if having a young child reduces 
productivity – through, say, having to take time off for sick children and appointments – then it 
would be inappropriate to exclude kidlt6 from the wage equation. 
 
 (v) The t statistic on the inverse Mills ratio is 1.77 and the p-value against the two-sided 
alternative is .077.  With 3,286 observations, this is not a very small p-value.  The test on λ̂  does 
not provide strong evidence against the null hypothesis of no selection bias. 
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 (vi) Just as important, the slope coefficients do not change much when the inverse Mills ratio 
is added.  For example, the coefficient on educ increases from .099 to .103 – a change within the 
95% confidence interval for the original OLS estimate.  [The 95% CI is (.092,.106.)].  The 
changes on the experience coefficients are also pretty small; the Heckman estimates are well 
within the 95% confidence intervals of the OLS estimates.  Superficially, the black and hispanic 
coefficients change by larger amounts, but these estimates are statistically insignificant.  Based 
on the wide confidence intervals, we expect rather wide changes in the estimates to even minor 
changes in the specification. 
 The most substantial change is in the intercept estimate – from .649 to .539 – but it is hard to 
know what to make of this.  Remember, in this example, the intercept is the estimated value of 
log(wage) for a non-black, non-Hispanic woman with zero years of education and experience.  
No one in the full sample even comes close to this description.  Because the slope coefficients do 
change somewhat, we cannot say that the Heckman estimates imply a lower average wage offer 
than the uncorrected estimates.  Even if this were true, the estimated marginal effects of the 
explanatory variables are hardly affected. 
 
C17.13 (i) Using the entire sample, the estimated coefficient on educ is .1037 with standard error 
= .0097. 
 
 (ii) 166 observations are lost when we restrict attention to the sample with educ < 16. This is 
about 13.5% of the original sample. The coefficient on educ becomes .1182 with standard error = 
.0126. This is a slight increase in the estimated return to education, and it is estimated less 
precisely (because we have reduced the sample variation in educ). 
 
 (iii) If we restrict attention to those with wage < 20, we lose 164 observations [about the 
same number in part (ii)]. But now the coefficient on educ is much smaller, .0579, with standard 
error = .0093. 
 
 (iv) If we use the sample in part (iii) but account for the known truncation point, log(20), the 
coefficient on educ is .1060 (standard error = .0168). This is very close to the estimate on the 
original sample. We obtain a less precise estimate because we have dropped 13.3% of the 
original sample. 



CHAPTER 18 
 

SOLUTIONS TO PROBLEMS 
 
18.1 With zt1 and zt2 now in the model, we should use one lag each as instrumental variables, zt-1,1 
and zt-1,2.  This gives one overidentifying restriction that can be tested. 
 
18.3 For δ ≠ β, yt – δzt = yt – βzt + (β – δ)zt, which is an I(0) sequence (yt – βzt) plus an I(1) 
sequence.  Since an I(1) sequence has a growing variance, it dominates the I(0) part, and the 
resulting sum is an I(1) sequence. 
 
18.5 Following the hint, we have 
 

yt – yt-1  =  βxt – βxt-1 + βxt-1 – yt-1 + ut 
 

or 
 

Δyt  =  βΔxt – (yt-1 – βxt-1) + ut. 
 

Next, we plug in Δxt = γΔxt-1 + vt to get 
 
 Δyt = β(γΔxt-1 + vt) – (yt-1 – βxt-1) + ut 

  = βγΔxt-1 – (yt-1 – βxt-1) + ut + βvt 

  ≡ γ1Δxt-1 + δ(yt-1 – βxt-1) + et, 
 
where γ1 = βγ, δ = –1, and et = ut + βvt. 
 
18.7 If unemt follows a stable AR(1) process, then this is the null model used to test for Granger 
causality:  under the null that gMt does not Granger cause unemt, we can write 
 
 unemt  =  β0 + β1unemt-1 + ut 

 E(ut|unemt-1, gMt-1, unemt-2, gMt-2, … )  =  0 
 
and |β1| < 1.  Now, it is up to us to choose how many lags of gM to add to this equation.  The 
simplest approach is to add gMt-1 and to do a t test.  But we could add a second or third lag (and 
probably not beyond this with annual data), and compute an F test for joint significance of all 
lags of gMt. 
 
18.9 Let  be the forecast error for forecasting yn+1, and let 1ˆne + 1ˆna +  be the forecast error for 

forecasting Δyn+1.  By definition, = yn+1 − 1ˆne + n̂f  = yn+1 – (  + yn) = (yn+1 – yn) −  = Δyn+1 − 
 = , where the last equality follows by definition of the forecasting error for Δyn+1. 

ˆng ˆng
ˆng 1+ˆna
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SOLUTIONS TO COMPUTER EXERCISES 
 
C18.1 (i) The estimated GDL model is 
 
 lgprice  =  .0013 + .081 gwage + .640 gprice-1 
   (.0003)  (.031)  (.045) 

 n  =  284,   R2  =  .454. 
 
The estimated impact propensity is .081 while the estimated LRP is .081/(1 – .640) = .225.  The 
estimated lag distribution is graphed below. 
 

lag
0 1 2 3 4 5 6 7 8 9 10 11 12

0

.02

.04

.06

.08

coefficient .1

 
 (ii) The IP for the FDL model estimated in Problem 11.5 was .119, which is substantially 
above the estimated IP for the GDL model.  Further, the estimated LRP from GDL model is 
much lower than that for the FDL model, which we estimated as 1.172.  Clearly we cannot think 
of the GDL model as a good approximation to the FDL model.  One reason these are so different 
can be seen by comparing the estimated lag distributions (see below for the GDL model).  With 
the FDL, the largest lag coefficient is at the ninth lag, which is impossible with the GDL model 
(where the largest impact is always at lag zero).  It could also be that {ut} in equation (18.8) does 
not follow an AR(1) process with parameter ρ, which would cause the dynamic regression to 
produce inconsistent estimators of the lag coefficients. 
 
 (iii) When we estimate the RDL from equation (18.16) we obtain 
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  = .0011 + .090 gwage + .619 gprice-1 + .055 gwage-1 ngprice
   (.0003)  (.031)  (.046)  (.032) 

 n  =  284,   R2  =  .460. 
 
The coefficient on gwage-1 is not especially significant but we include it in obtaining the 
estimated LRP.  The estimated IP is .09 while the LRP is (.090 + .055)/(1 – .619)  .381.  These 
are both slightly higher than what we obtained for the GDL, but the LRP is still well below what 
we obtained for the FDL in Problem 11.5.  While this RDL model is more flexible than the GDL 
model, it imposes a maximum lag coefficient (in absolute value) at lag zero or one.  For the 
estimates given above, the maximum effect is at the first lag.  (See the estimated lag distribution 
below.)  This is not consistent with the FDL estimates in Problem 11.5. 

≈

lag
0 1 2 3 4 5 6 7 8 9 10 11 12

0

.02

.04

.06

.08

.1

coefficient .12

 
C18.3 (i) The estimated AR(3) model for pcipt is 
 
 n

tpcip  = 1.80 + .349 pcipt-1 + .071 pcipt-2 + .067 pcipt-2 
   (0.55)  (.043)  (.045)  (.043) 

 n  =  554,   R2  =  .166,   σ̂   =  12.15. 
 
When pcipt-4 is added, its coefficient is .0043 with a t statistic of about .10. 
 
 (ii) In the model 
 

pcipt  =  δ0 + α1pcipt-1 + α2pcipt-2 + α3pcipt-3 + γ1pcspt-1 + γ2pcspt-2 + γ3pcspt-3 + ut, 
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The null hypothesis is that pcsp does not Granger cause pcip.  This is stated as H0: γ1 = γ2 = γ3 = 
0.  The F statistic for joint significance of the three lags of pcspt, with 3 and 547 df, is F = 5.37 
and p-value = .0012.  Therefore, we strongly reject H0 and conclude that pcsp does Granger 
cause pcip. 
 
 (iii) When we add Δi3t-1, Δi3t-2, and Δi3t-3 to the regression from part (ii), and now test the 
joint significance of pcspt-1, pcspt-2, and pcspt-3, the F statistic is 5.08.  With 3 and 544 df in the F 
distribution, this gives p-value = .0018, and so pcsp Granger causes pcip even conditional on 
past Δi3. 
 
C18.5 (i) The estimated equation is 
 
  = .078 + 1.027 hy3t-1 − 1.021 Δhy3t − .085 Δhy3t-1 − .104 Δhy3t-2 n6thy
   (.028)  (0.016)  (0.038)  (.037)  (.037) 

 n  =  121,   R2  =  .982,   σ̂   =  .123. 
 
The t statistic for H0: β = 1 is (1.027 – 1)/.016 ≈ 1.69.  We do not reject H0: β = 1 at the 5% level 
against a two-sided alternative, although we would reject at the 10% level. 
 
 (ii) The estimated error correction model is 
 
  = .070 + 1.259 Δhy3t-1 − .816 (hy6t-1 – hy3t-2) n6thy
   (.049)  (.278)  (.256) 

  + .283 Δhy3t-2 + .127 (hy6t-2 – hy3t-3) 
   (.272)  (.256) 

 n  =  121,   R2  =  .795. 
 
Neither of the added terms is individually significant.  The F test for their joint significance gives 
F = 1.35, p-value = .264.  Therefore, we would omit these terms and stick with the error 
correction model estimated in (18.39). 
 
C18.7 (i) The estimated linear trend equation using the first 119 observations and excluding the 
last 12 months is  
 
 n

tchnimp  = 248.58 + 5.15 t 
   (53.20)  (0.77) 

 n  =  119,   R2  =  .277,   σ̂   =  288.33. 
 
The standard error of the regression is 288.33. 
 
 (ii) The estimated AR(1) model excluding the last 12 months is  
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 n
tchnimp  = 329.18 + .416 chnimpt-1 

   (54.71)  (.084) 

 n  =  118,   R2  =  .174,   σ̂   =  308.17. 
  
Because σ̂  is lower for the linear trend model, it provides the better in-sample fit. 
 
 (iii) Using the last 12 observations for one-step-ahead out-of-sample forecasting gives an 
RMSE and MAE for the linear trend equation of about 315.5 and 201.9, respectively.  For the 
AR(1) model, the RMSE and MAE are about 388.6 and 246.1, respectively.  In this case, the 
linear trend is the better forecasting model. 
 
 (iv) Using again the first 119 observations, the F statistic for joint significance of febt, mart, 
…, dect when added to the linear trend model is about 1.15 with p-value ≈ .328.  (The df are 11 
and 107.)  So there is no evidence that seasonality needs to be accounted for in forecasting 
chnimp. 
 

year
1913 1941 1963 1984

65

85

100

gfr
125

 
  
 
C18.9 (i) Using the data up through 1989 gives 
 
 ˆty    = 3,186.04 + 116.24 t + .630 yt-1 
   (1,163.09)  (46.31)  (.148) 

 n  =  30,   R2  =  .994,   σ̂   =  223.95. 
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(Notice how high the R-squared is.  However, it is meaningless as a goodness-of-fit measure 
because {yt} has a trend, and possibly a unit root.) 
 
 (ii) The forecast for 1990 (t = 32) is 3,186.04 + 116.24(32) + .630(17,804.09)  18,122.30, 
because y is $17,804.09 in 1989.  The actual value for real per capita disposable income was 
$17,944.64, and so the forecast error is –$177.66. 

≈

 
 (iii) The MAE for the 1990s, using the model estimated in part (i), is about 371.76. 
 
 (iv) Without yt-1 in the equation, we obtain 
 
 ˆty  = 8,143.11 + 311.26 t 
   (103.38)  (5.64) 

 n  =  31,   R2  =  .991,   σ̂   =  280.87. 
 
The MAE for the forecasts in the 1990s is about 718.26.  This is much higher than for the model 
with yt-1, so we should use the AR(1) model with a linear time trend. 
 
C18.11 (i) For lsp500, the ADF statistic without a trend is t = −.79; with a trend, the t statistic is 
−2.20.  This are both well above their respective 10% critical values.  In addition, the estimated 
roots are quite close to one.  For lip, the ADF statistic without a trend is −1.37 without a trend 
and −2.52 with a trend.  Again, these are not close to rejecting even at the 10% levels, and the 
estimated roots are very close to one. 
 
 (ii) The simple regression of lsp500 on lip gives  
 
  = −2.402  +   1.694 lip n500lsp
  (.095) (.024) 
 
 n = 558, R2 = .903 
 
The t statistic for lip is over 70, and the R-squared is over .90.  These are hallmarks of spurious 
regressions. 
 
 (iii) Using the residuals  obtained in part (ii), the ADF statistic (with two lagged changes) 
is −1.57, and the estimated root is over .99.  There is no evidence of cointegration.  (The 10% 
critical value is −3.04.) 

ˆtu

 
 (iv) After adding a linear time trend to the regression from part (ii), the ADF statistic applied 
to the residuals is −1.88, and the estimated root is again about .99.  Even with a time trend there 
is no evidence of cointegration. 
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 (v) It appears that lsp500 and lip do not move together in the sense of cointegration, even if 
we allow them to have unrestricted linear time trends.  The analysis does not point to a long-run 
equilibrium relationship. 
 
C18.13 (i) The DF statistic is about −3.31, which is to the left of the 2.5% critical value (−3.12), 
and so, using this test, we can reject a unit root at the 2.5% level. (The estimated root is about 
.81.) 
 
 (ii) When two lagged changes are added to the regression in part (i), the t statistic becomes 
−1.50, and the root is larger (about .915).  Now, there is little evidence against a unit root. 
 
 (iii) If we add a time trend to the regression in part (ii), the ADF statistic becomes −3.67, and 
the estimated root is about .57.  The 2.5% critical value is −3.66, and so we are back to fairly 
convincingly rejecting a unit root. 
 
 (iv) The best characterization seems to be an I(0) process about a linear trend.  In fact, a 
stable AR(3) about a linear trend is suggested by the regression in part (iii). 
 
 (v) For prcfatt, the ADF statistic without a trend is −4.74 (estimated root = .62) and with a 
time trend the statistic is −5.29 (estimated root = .54).  Here, the evidence is strongly in favor of 
an I(0) process whether or not we include a trend. 



APPENDIX A 
 
SOLUTIONS TO PROBLEMS 
 
A.1 (i) $566. 
 
 (ii) The two middle numbers are 480 and 530; when these are averaged, we obtain 505, or 
$505. 
 
 (iii) 5.66 and 5.05, respectively. 
 
 (iv) The average increases to $586 while the median is unchanged ($505). 
 
A.3 If price = 15 and income = 200, quantity = 120 – 9.8(15) + .03(200) = –21, which is 
nonsense.  This shows that linear demand functions generally cannot describe demand over a 
wide range of prices and income. 
 
A.5 The majority shareholder is referring to the percentage point increase in the stock return, 
while the CEO is referring to the change relative to the initial return of 15%.  To be precise, the 
shareholder should specifically refer to a 3 percentage point increase. 
 
A.7 (i) When exper = 0, log(salary) = 10.6; therefore, salary = exp(10.6) ≈ $40,134.84.  When 
exper = 5, salary = exp[10.6 + .027(5)] ≈ $45,935.80. 
 
 (ii) The approximate proportionate increase is .027(5) = .135, so the approximate percentage 
change is 13.5%. 
 
 (iii) 100[(45,935.80 – 40,134.84)/40,134.84) ≈ 14.5%, so the exact percentage increase is 
about one percentage point higher. 
 
A.9 (i) The relationship between yield and fertilizer is graphed below. 
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 (ii) Compared with a linear function, the function 
 

yield  =  .120 + .19 fertilizer  
 
has a diminishing effect, and the slope approaches zero as fertilizer gets large.  The initial pound 
of fertilizer has the largest effect, and each additional pound has an effect smaller than the 
previous pound. 
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APPENDIX B 
 

SOLUTIONS TO PROBLEMS 
 
B.1 Before the student takes the SAT exam, we do not know – nor can we predict with certainty 
– what the score will be.  The actual score depends on numerous factors, many of which we 
cannot even list, let alone know ahead of time.  (The student’s innate ability, how the student 
feels on exam day, and which particular questions were asked, are just a few.)  The eventual SAT 
score clearly satisfies the requirements of a random variable. 
 
B.3 (i) Let Yit be the binary variable equal to one if fund i outperforms the market in year t.  By 
assumption, P(Yit = 1) = .5 (a 50-50 chance of outperforming the market for each fund in each 
year).  Now, for any fund, we are also assuming that performance relative to the market is 
independent across years.  But then the probability that fund i outperforms the market in all 10 
years, P(Yi1 = 1,Yi2 = 1, … , Yi,10 = 1), is just the product of the probabilities:  P(Yi1 = 1) ⋅P(Yi2 = 
1) …  P(Yi,10 = 1) = (.5)10 = 1/1024 (which is slightly less than .001).  In fact, if we define a 
binary random variable Yi such that Yi = 1 if and only if fund i outperformed the market in all 10 
years, then P(Yi = 1) = 1/1024. 
 
 (ii) Let X denote the number of funds out of 4,170 that outperform the market in all 10 years.  
Then X = Y1 + Y2 + …  + Y4,170.  If we assume that performance relative to the market is 
independent across funds, then X has the Binomial (n,θ) distribution with n = 4,170 and θ = 
1/1024.  We want to compute P(X ≥ 1) = 1 – P(X = 0) = 1 – P(Y1 = 0, Y2 = 0, …, Y4,170 = 0) = 1 – 
P(Y1 = 0)⋅ P(Y2 = 0)⋅⋅⋅P(Y4,170 = 0) = 1 – (1023/1024)4170 ≈ .983.  This means, if performance 
relative to the market is random and independent across funds, it is almost certain that at least 
one fund will outperform the market in all 10 years. 
 
 (iii) Using the Stata command Binomial(4170,5,1/1024), the answer is about .385.  So there 
is a nontrivial chance that at least five funds will outperform the market in all 10 years. 
 
B.5 (i) As stated in the hint, if X is the number of jurors convinced of Simpson’s innocence, then 
X ~ Binomial(12,.20).  We want P(X ≥ 1) = 1 – P(X = 0) = 1 – (.8)12 ≈ .931. 
 
 (ii) Above, we computed P(X = 0) as about .069.  We need P(X = 1), which we obtain from 
(B.14) with n = 12, θ = .2, and x = 1:  P(X = 1) = 12⋅ (.2)(.8)11 ≈ .206.  Therefore, P(X ≥ 2) ≈ 1 – 
(.069 + .206) = .725, so there is almost a three in four chance that the jury had at least two 
members convinced of Simpson’s innocence prior to the trial. 
 
B.7 In eight attempts the expected number of free throws is 8(.74) = 5.92, or about six free 
throws. 
 
B.9 If Y is salary in dollars then Y = 1000 ⋅X, and so the expected value of Y is 1,000 times the 
expected value of X, and the standard deviation of Y is 1,000 times the standard deviation of X.  
Therefore, the expected value and standard deviation of salary, measured in dollars, are $52,300 
and $14,600, respectively. 
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APPENDIX C 
 
SOLUTIONS TO PROBLEMS 
 
C.1 (i) This is just a special case of what we covered in the text, with n = 4:  E(Y ) = µ and 
Var(Y ) = σ2/4. 
 
 (ii) E(W) = E(Y1)/8 + E(Y2)/8 + E(Y3)/4 + E(Y4)/2 = µ[(1/8) + (1/8) + (1/4) + (1/2)] = µ(1 + 
1 + 2 + 4)/8 = µ, which shows that W is unbiased.  Because the Yi are independent, 
 
 Var(W) = Var(Y1)/64 + Var(Y2)/64 + Var(Y3)/16 + Var(Y4)/4 

  = σ2[(1/64) + (1/64) + (4/64) + (16/64)]  = σ2(22/64)  = σ2(11/32). 
 
 (iii) Because 11/32 > 8/32 = 1/4, Var(W) > Var(Y ) for any σ2 > 0, so Y is preferred to W 
because each is unbiased. 
 
C.3 (i) E(W1) = [(n – 1)/n]E(Y ) = [(n – 1)/n]µ, and so Bias(W1) = [(n – 1)/n]µ – µ = –µ/n.  
Similarly, E(W2) = E(Y )/2 = µ/2, and so Bias(W2) = µ/2 – µ = –µ/2.  The bias in W1 tends to 
zero as n → ∞, while the bias in W2 is –µ/2 for all n.  This is an important difference. 
 
 (ii) plim(W1) = plim[(n – 1)/n] ⋅plim(Y ) = 1 ⋅µ = µ.  plim(W2) =  plim(Y )/2  = µ/2.  Because 
plim(W1) = µ and plim(W2) = µ/2, W1 is consistent whereas W2 is inconsistent. 
 
 (iii) Var(W1) = [(n – 1)/n]2Var(Y ) = [(n – 1)2/n3]σ2 and Var(W2) = Var(Y )/4 = σ2/(4n).  
 
 (iv) Because Y  is unbiased, its mean squared error is simply its variance.  On the other hand, 
MSE(W1) = Var(W1) + [Bias(W1)]2 = [(n – 1)2/n3]σ2 + µ2/n2.  When µ = 0, MSE(W1) = Var(W1) = 
[(n – 1)2/n3]σ2 < σ2/n = Var(Y ) because (n – 1)/n < 1.  Therefore, MSE(W1) is smaller than 
Var(Y ) for µ close to zero.  For large n, the difference between the two estimators is trivial. 
 
C.5 (i) While the expected value of the numerator of G is E(Y ) = θ, and the expected value of 
the denominator is E(1 – Y ) = 1 – θ, the expected value of the ratio is not the ratio of the 
expected value. 
 
 (ii) By Property PLIM.2(iii), the plim of the ratio is the ratio of the plims (provided the plim 
of the denominator is not zero):  plim(G) = plim[Y /(1 – Y )] = plim(Y )/[1 – plim(Y )] = θ/(1 – 
θ) = γ. 
 
C.7 (i) The average increase in wage is d  = .24, or 24 cents.  The sample standard deviation is 
about .451, and so, with n = 15, the standard error of d  is .451 15  ≈ .1164.  From Table G.2, 
the 97.5th percentile in the t14 distribution is 2.145.  So the 95% CI is .24 ± 2.145(.1164), or about 
–.010 to .490. 
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 (ii) If µ = E(Di) then H0: µ = 0.  The alternative is that management’s claim is true:  H1: µ > 
0. 
 
 (iii) We have the mean and standard error from part (i):  t = .24/.1164 ≈ 2.062.  The 5% 
critical value for a one-tailed test with df = 14 is 1.761, while the 1% critical value is 2.624.  
Therefore, H0 is rejected in favor of H1 at the 5% level but not the 1% level. 
 
 (iv) The p-value obtained from Stata is .029; this is half of the p-value for the two-sided 
alternative.  (Econometrics packages, including Stata, report the p-value for the two-sided 
alternative.) 
 
C.9 (i) X is distributed as Binomial(200,.65), and so E(X) = 200(.65) = 130. 
 
 (ii) Var(X) = 200(.65)(1 − .65) = 45.5, so sd(X) ≈ 6.75. 
 
 (iii) P(X ≤ 115) = P[(X – 130)/6.75 ≤ (115 – 130)/6.75] ≈ P(Z ≤ –2.22), where Z is a standard 
normal random variable.  From Table G.1, P(Z ≤ –2.22) ≈ .013. 
 
 (iv) The evidence is pretty strong against the dictator’s claim.  If 65% of the voting 
population actually voted yes in the plebiscite, there is only about a 1.3% chance of obtaining 
115 or fewer voters out of 200 who voted yes. 
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APPENDIX D 
 

SOLUTIONS TO PROBLEMS 
 

D.1 (i)  
0 1 6

2 1 7 20 6 12
1 8 0

4 5 0 5 36 24
3 0 0

⎛ ⎞
− −⎛ ⎞ ⎛⎜ ⎟= =⎜ ⎟ ⎜⎜ ⎟− −⎝ ⎠ ⎝⎜ ⎟

⎝ ⎠

AB
⎞
⎟
⎠

 
 (ii) BA does not exist because B is 3 × 3 and A is 2 × 3. 
 
D.3 Using the basic rules for transpose, ( ) ( )( )′ ′ ′ ′ ′ ′= =X X X X X X , which is what we wanted to 
show. 
 
D.5 (i) The n × n matrix C is the inverse of AB if and only if C(AB) = In and (AB)C = In.  We 
verify both of these equalities for C = B-1A-1.  First, (B-1A-1)(AB) = B-1(A-1A)B = B-1InB = 
B-1B = In.  Similarly, (AB)(B-1A-1) = A(BB-1)A-1 = AInA-1 = AA-1 = In. 
 
 (ii) (ABC)-1 = (BC)-1A-1 = C-1B-1A-1. 
 
D.7 We must show that, for any n × 1 vector x, x ≠ 0, x ′(P′AB) x > 0.  But we can write this 
quadratic form as (P x)′A(P x) = z′Az where z ≡ Px.  Because A is positive definite by 
assumption, z′Az > 0 for z ≠ 0.  So, all we have to show is that x ≠ 0 implies that z ≠ 0.  We do 
this by showing the contrapositive, that is, if z = 0 then x = 0.  If Px = 0 then, because P-1 exists, 
we have P-1Px = 0 or x = 0, which completes the proof. 
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APPENDIX E 
 

SOLUTIONS TO PROBLEMS 
 
E.1 This follows directly from partitioned matrix multiplication in Appendix D.  Write  
 

 X  =  , X′  =  (

1

2

n

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

x
x

x
# 1′x 2′x … n′x ), and y = 

1

2

n

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
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⎝ ⎠

y
y

y
#

 

 

Therefore, X′X =  and X′y =  
1

n

t t
t=

′∑x x
1

n

t t
t=

′∑x y .  An equivalent expression for  is  β̂

      = β̂
1

1

1

n

t t
t

n
−

−

=

⎛ ⎞′⎜ ⎟
⎝ ⎠

∑x x  1

1

n

t t
t

n y−

=

⎛ ⎞′⎜ ⎟
⎝ ⎠

∑x  

which, when we plug in yt = xtβ + ut for each t and do some algebra, can be written as  

     = β + β̂
1

1

1

n

t t
t

n
−

−

=

⎛ ⎞′⎜ ⎟
⎝ ⎠

∑x x 1

1

n

t t
t

n u−

=

⎛ ⎞′⎜ ⎟
⎝ ⎠

∑x .  

As shown in Section E.4, this expression is the basis for the asymptotic analysis of OLS using 
matrices. 
 
E.3 (i) We use the placeholder feature of the OLS formulas.  By definition,  = (Z′Z)-1Z′y = 
[(XA)′ (XA)]-1(XA)′y = [A′(X′X)A]-1A′X′y = A-1(X′X)-1(A′)-1A′X′y = A-1(X′X)-1X′y = A-1 . 

β�

β̂
 
 (ii) By definition of the fitted values, ˆty  =  and ˆ

tx β ty�  = .  Plugging zt and  into the 

second equation gives 
tz β� β�

ty�  = (xtA)(A-1 ) =   = β̂ β̂tx ˆty . 
 
 (iii) The estimated variance matrix from the regression of y and Z is 2σ� (Z′Z)-1 where 2σ�  is 
the error variance estimate from this regression.  From part (ii), the fitted values from the two 
regressions are the same, which means the residuals must be the same for all t.  (The dependent 
variable is the same in both regressions.)  Therefore, 2σ�  =  2σ̂ .  Further, as we showed in part 
(i), (Z′Z)-1 = A-1(X′X)-1(A′)-1, and so 2σ� (Z′Z)-1 = 2σ̂ A-1(X′X)-1(A-1)′, which is what we wanted 
to show. 
 
 (iv) The jβ�  are obtained from a regression of y on XA, where A is the k × k diagonal matrix 

with 1, a2, … , ak down the diagonal.  From part (i), β  = A-1 .  But A-1 is easily seen to be the 
k × k diagonal matrix with 1, ,  … , 

� β̂
1

2a− 1
ka−  down its diagonal.  Straightforward multiplication 

shows that the first element of A-1  is β̂ 1̂β  and the jth element is ˆ
jβ /aj,  j = 2, … , k. 
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 (v) From part (iii), the estimated variance matrix of  is β� 2σ̂ A-1(X′X)-1(A-1)′.  But A-1 is a 
symmetric, diagonal matrix, as described above.  The estimated variance of  jβ�  is the jth 

diagonal element of 2σ̂ A-1(X′X)-1A-1, which is easily seen to be = 2σ̂ cjj/ , where cjj is the jth 

diagonal element of (X′X)-1.  The square root of this, 

2
ja−

ˆ jjcσ /|aj|, is se( jβ� ), which is simply 

se( jβ� )/|aj|. 
 
 (vi) The t statistic for jβ�  is, as usual, 
 

jβ� /se( jβ� )  =  ( ˆ
jβ /aj)/[se( ˆ

jβ )/|aj|], 
 

and so the absolute value is (| ˆ
jβ |/|aj|)/[se( ˆ

jβ )/|aj|] = | ˆ
jβ |/se( ˆ

jβ ), which is just the absolute value 

of the t statistic for ˆ
jβ .  If aj > 0, the t statistics themselves are identical; if aj < 0, the t statistics 

are simply opposite in sign. 
 
E.5 (i) By plugging in for y, we can write  
 
    .1 1( ) ( ) ( ) ( )− −′ ′ ′ ′ ′ ′= = + = +β Z X Z 1−y Z X Z Xβ u β Z X Z u�  
 
Now we use the fact that Z is a function of X to pull Z outside of the conditional expectation: 
 
     1 1E( | ) E[( ) | ] ( ) E( | ) .− −′ ′ ′ ′= + = + =β X β Z X Z u X β Z X Z u X β�
 
 (ii) We start from the same representation in part (i): 1( )−′ ′= +β β Z X Z u�  and so  
 

     
1 1

1 2 1 2 1

Var( | ) ( ) [Var( | )] [( ) ]
       ( ) ( ) ( ) ( ) ( ) .nσ σ

− −

− − −

′ ′ ′ ′=

′ ′ ′ ′ ′ ′= =

β X Z X Z u X Z Z X
Z X Z I Z X Z Z X Z Z X Z

�
1−

 
A common mistake is to forget to transpose the matrix ′Z X  in the last term. 
 
 (iii) The estimator β  is linear in y and, as shown in part (i), it is unbiased (conditional on X).  
Because the Gauss-Markov assumptions hold, the OLS estimator, , is best linear unbiased.  In 
particular, its variance-covariance matrix is “smaller” (in the matrix sense) than Va  
Therefore, we prefer the OLS estimator. 

�

β̂
r( | ).β X�
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